Papers in computer-vision

Explore research papers in the computer-vision category.

Towards General Modality Translation with Contrastive and Predictive Latent Diffusion Bridge

Oct 23, 2025
5 authors

Recent advances in generative modeling have positioned diffusion models as state-of-the-art tools for sampling from complex data distributions. While these models have shown remarkable success across single-modality domains such as images and audio, extending their capabilities to Modality Translation (MT), translating information across different sensory modalities, remains an open challenge. Existing approaches often rely on restrictive assumptions, including shared dimensionality, Gaussian source priors, and modality-specific architectures, which limit their generality and theoretical grounding. In this work, we propose the Latent Denoising Diffusion Bridge Model (LDDBM), a general-purpose framework for modality translation based on a latent-variable extension of Denoising Diffusion Bridge Models. By operating in a shared latent space, our method learns a bridge between arbitrary modalities without requiring aligned dimensions. We introduce a contrastive alignment loss to enforce semantic consistency between paired samples and design a domain-agnostic encoder-decoder architecture tailored for noise prediction in latent space. Additionally, we propose a predictive loss to guide training toward accurate cross-domain translation and explore several training strategies to improve stability. Our approach supports arbitrary modality pairs and performs strongly on diverse MT tasks, including multi-view to 3D shape generation, image super-resolution, and multi-view scene synthesis. Comprehensive experiments and ablations validate the effectiveness of our framework, establishing a new strong baseline in general modality translation. For more information, see our project page: https://sites.google.com/view/lddbm/home.

cs.CVcs.AIcs.LG

Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation

Oct 23, 2025
3 authors

Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict

cs.CVcs.AIcs.CL

Video Prediction of Dynamic Physical Simulations With Pixel-Space Spatiotemporal Transformers

Oct 23, 2025
4 authors

Inspired by the performance and scalability of autoregressive large language models (LLMs), transformer-based models have seen recent success in the visual domain. This study investigates a transformer adaptation for video prediction with a simple end-to-end approach, comparing various spatiotemporal self-attention layouts. Focusing on causal modeling of physical simulations over time; a common shortcoming of existing video-generative approaches, we attempt to isolate spatiotemporal reasoning via physical object tracking metrics and unsupervised training on physical simulation datasets. We introduce a simple yet effective pure transformer model for autoregressive video prediction, utilizing continuous pixel-space representations for video prediction. Without the need for complex training strategies or latent feature-learning components, our approach significantly extends the time horizon for physically accurate predictions by up to 50% when compared with existing latent-space approaches, while maintaining comparable performance on common video quality metrics. In addition, we conduct interpretability experiments to identify network regions that encode information useful to perform accurate estimations of PDE simulation parameters via probing models, and find that this generalizes to the estimation of out-of-distribution simulation parameters. This work serves as a platform for further attention-based spatiotemporal modeling of videos via a simple, parameter efficient, and interpretable approach.

cs.CVcs.LG

Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples

Oct 23, 2025
4 authors

Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.

cs.LGcs.AIcs.CL+1

Radar-Camera Fused Multi-Object Tracking: Online Calibration and Common Feature

Oct 23, 2025
2 authors

This paper presents a Multi-Object Tracking (MOT) framework that fuses radar and camera data to enhance tracking efficiency while minimizing manual interventions. Contrary to many studies that underutilize radar and assign it a supplementary role--despite its capability to provide accurate range/depth information of targets in a world 3D coordinate system--our approach positions radar in a crucial role. Meanwhile, this paper utilizes common features to enable online calibration to autonomously associate detections from radar and camera. The main contributions of this work include: (1) the development of a radar-camera fusion MOT framework that exploits online radar-camera calibration to simplify the integration of detection results from these two sensors, (2) the utilization of common features between radar and camera data to accurately derive real-world positions of detected objects, and (3) the adoption of feature matching and category-consistency checking to surpass the limitations of mere position matching in enhancing sensor association accuracy. To the best of our knowledge, we are the first to investigate the integration of radar-camera common features and their use in online calibration for achieving MOT. The efficacy of our framework is demonstrated by its ability to streamline the radar-camera mapping process and improve tracking precision, as evidenced by real-world experiments conducted in both controlled environments and actual traffic scenarios. Code is available at https://github.com/radar-lab/Radar_Camera_MOT

cs.CVeess.SP

ALICE-LRI: A General Method for Lossless Range Image Generation for Spinning LiDAR Sensors without Calibration Metadata

Oct 23, 2025
6 authors

3D LiDAR sensors are essential for autonomous navigation, environmental monitoring, and precision mapping in remote sensing applications. To efficiently process the massive point clouds generated by these sensors, LiDAR data is often projected into 2D range images that organize points by their angular positions and distances. While these range image representations enable efficient processing, conventional projection methods suffer from fundamental geometric inconsistencies that cause irreversible information loss, compromising high-fidelity applications. We present ALICE-LRI (Automatic LiDAR Intrinsic Calibration Estimation for Lossless Range Images), the first general, sensor-agnostic method that achieves lossless range image generation from spinning LiDAR point clouds without requiring manufacturer metadata or calibration files. Our algorithm automatically reverse-engineers the intrinsic geometry of any spinning LiDAR sensor by inferring critical parameters including laser beam configuration, angular distributions, and per-beam calibration corrections, enabling lossless projection and complete point cloud reconstruction with zero point loss. Comprehensive evaluation across the complete KITTI and DurLAR datasets demonstrates that ALICE-LRI achieves perfect point preservation, with zero points lost across all point clouds. Geometric accuracy is maintained well within sensor precision limits, establishing geometric losslessness with real-time performance. We also present a compression case study that validates substantial downstream benefits, demonstrating significant quality improvements in practical applications. This paradigm shift from approximate to lossless LiDAR projections opens new possibilities for high-precision remote sensing applications requiring complete geometric preservation.

cs.CVcs.RO

Mixing Importance with Diversity: Joint Optimization for KV Cache Compression in Large Vision-Language Models

Oct 23, 2025
4 authors

Recent large vision-language models (LVLMs) demonstrate remarkable capabilities in processing extended multi-modal sequences, yet the resulting key-value (KV) cache expansion creates a critical memory bottleneck that fundamentally limits deployment scalability. While existing KV cache compression methods focus on retaining high-importance KV pairs to minimize storage, they often overlook the modality-specific semantic redundancy patterns that emerge distinctively in multi-modal KV caches. In this work, we first analyze how, beyond simple importance, the KV cache in LVLMs exhibits varying levels of redundancy across attention heads. We show that relying solely on importance can only cover a subset of the full KV cache information distribution, leading to potential loss of semantic coverage. To address this, we propose \texttt{MixKV}, a novel method that mixes importance with diversity for optimized KV cache compression in LVLMs. \texttt{MixKV} adapts to head-wise semantic redundancy, selectively balancing diversity and importance when compressing KV pairs. Extensive experiments demonstrate that \texttt{MixKV} consistently enhances existing methods across multiple LVLMs. Under extreme compression (budget=64), \texttt{MixKV} improves baseline methods by an average of \textbf{5.1\%} across five multi-modal understanding benchmarks and achieves remarkable gains of \textbf{8.0\%} and \textbf{9.0\%} for SnapKV and AdaKV on GUI grounding tasks, all while maintaining comparable inference efficiency. Furthermore, \texttt{MixKV} extends seamlessly to LLMs with comparable performance gains. Our code is available at \href{https://github.com/xuyang-liu16/MixKV}{\textcolor{citeblue}{https://github.com/xuyang-liu16/MixKV}}.

cs.CV

HybridSOMSpikeNet: A Deep Model with Differentiable Soft Self-Organizing Maps and Spiking Dynamics for Waste Classification

Oct 23, 2025
2 authors

Accurate waste classification is vital for achieving sustainable waste management and reducing the environmental footprint of urbanization. Misclassification of recyclable materials contributes to landfill accumulation, inefficient recycling, and increased greenhouse gas emissions. To address these issues, this study introduces HybridSOMSpikeNet, a hybrid deep learning framework that integrates convolutional feature extraction, differentiable self-organization, and spiking-inspired temporal processing to enable intelligent and energy-efficient waste classification. The proposed model employs a pre-trained ResNet-152 backbone to extract deep spatial representations, followed by a Differentiable Soft Self-Organizing Map (Soft-SOM) that enhances topological clustering and interpretability. A spiking neural head accumulates temporal activations over discrete time steps, improving robustness and generalization. Trained on a ten-class waste dataset, HybridSOMSpikeNet achieved a test accuracy of 97.39%, outperforming several state-of-the-art architectures while maintaining a lightweight computational profile suitable for real-world deployment. Beyond its technical innovations, the framework provides tangible environmental benefits. By enabling precise and automated waste segregation, it supports higher recycling efficiency, reduces contamination in recyclable streams, and minimizes the ecological and operational costs of waste processing. The approach aligns with global sustainability priorities, particularly the United Nations Sustainable Development Goals (SDG 11 and SDG 12), by contributing to cleaner cities, circular economy initiatives, and intelligent environmental management systems.

cs.CV

Better Tokens for Better 3D: Advancing Vision-Language Modeling in 3D Medical Imaging

Oct 23, 2025
10 authors

Recent progress in vision-language modeling for 3D medical imaging has been fueled by large-scale computed tomography (CT) corpora with paired free-text reports, stronger architectures, and powerful pretrained models. This has enabled applications such as automated report generation and text-conditioned 3D image synthesis. Yet, current approaches struggle with high-resolution, long-sequence volumes: contrastive pretraining often yields vision encoders that are misaligned with clinical language, and slice-wise tokenization blurs fine anatomy, reducing diagnostic performance on downstream tasks. We introduce BTB3D (Better Tokens for Better 3D), a causal convolutional encoder-decoder that unifies 2D and 3D training and inference while producing compact, frequency-aware volumetric tokens. A three-stage training curriculum enables (i) local reconstruction, (ii) overlapping-window tiling, and (iii) long-context decoder refinement, during which the model learns from short slice excerpts yet generalizes to scans exceeding 300 slices without additional memory overhead. BTB3D sets a new state-of-the-art on two key tasks: it improves BLEU scores and increases clinical F1 by 40% over CT2Rep, CT-CHAT, and Merlin for report generation; and it reduces FID by 75% and halves FVD compared to GenerateCT and MedSyn for text-to-CT synthesis, producing anatomically consistent 512*512*241 volumes. These results confirm that precise three-dimensional tokenization, rather than larger language backbones alone, is essential for scalable vision-language modeling in 3D medical imaging. The codebase is available at: https://github.com/ibrahimethemhamamci/BTB3D

cs.CV

Deep Learning in Dental Image Analysis: A Systematic Review of Datasets, Methodologies, and Emerging Challenges

Oct 23, 2025
6 authors

Efficient analysis and processing of dental images are crucial for dentists to achieve accurate diagnosis and optimal treatment planning. However, dental imaging inherently poses several challenges, such as low contrast, metallic artifacts, and variations in projection angles. Combined with the subjectivity arising from differences in clinicians' expertise, manual interpretation often proves time-consuming and prone to inconsistency. Artificial intelligence (AI)-based automated dental image analysis (DIA) offers a promising solution to these issues and has become an integral part of computer-aided dental diagnosis and treatment. Among various AI technologies, deep learning (DL) stands out as the most widely applied and influential approach due to its superior feature extraction and representation capabilities. To comprehensively summarize recent progress in this field, we focus on the two fundamental aspects of DL research-datasets and models. In this paper, we systematically review 260 studies on DL applications in DIA, including 49 papers on publicly available dental datasets and 211 papers on DL-based algorithms. We first introduce the basic concepts of dental imaging and summarize the characteristics and acquisition methods of existing datasets. Then, we present the foundational techniques of DL and categorize relevant models and algorithms according to different DIA tasks, analyzing their network architectures, optimization strategies, training methods, and performance. Furthermore, we summarize commonly used training and evaluation metrics in the DIA domain. Finally, we discuss the current challenges of existing research and outline potential future directions. We hope that this work provides a valuable and systematic reference for researchers in this field. All supplementary materials and detailed comparison tables will be made publicly available on GitHub.

cs.CVcs.AI

SeViCES: Unifying Semantic-Visual Evidence Consensus for Long Video Understanding

Oct 23, 2025
5 authors

Long video understanding remains challenging due to its complex, diverse, and temporally scattered content. Although video large language models (Video-LLMs) can process videos lasting tens of minutes, applying them to truly long sequences is computationally prohibitive and often leads to unfocused or inconsistent reasoning. A promising solution is to select only the most informative frames, yet existing approaches typically ignore temporal dependencies or rely on unimodal evidence, limiting their ability to provide complete and query-relevant context. We propose a Semantic-Visual Consensus Evidence Selection (SeViCES) framework for effective and reliable long video understanding. SeViCES is training-free and model-agnostic, and introduces two key components. The Semantic-Visual Consensus Frame Selection (SVCFS) module selects frames through (1) a temporal-aware semantic branch that leverages LLM reasoning over captions, and (2) a cluster-guided visual branch that aligns embeddings with semantic scores via mutual information. The Answer Consensus Refinement (ACR) module further resolves inconsistencies between semantic- and visual-based predictions by fusing evidence and constraining the answer space. Extensive experiments on long video understanding benchmarks show that SeViCES consistently outperforms state-of-the-art methods in both accuracy and robustness, demonstrating the importance of consensus-driven evidence selection for Video-LLMs.

cs.CV