Papers in nlp

Explore research papers in the nlp category.

Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation

Oct 23, 2025
3 authors

Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict

cs.CVcs.AIcs.CL

Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples

Oct 23, 2025
4 authors

Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.

cs.LGcs.AIcs.CL+1

Co-Designing Quantum Codes with Transversal Diagonal Gates via Multi-Agent Systems

Oct 23, 2025
3 authors

We present a multi-agent, human-in-the-loop workflow that co-designs quantum codes with prescribed transversal diagonal gates. It builds on the Subset-Sum Linear Programming (SSLP) framework (arXiv:2504.20847), which partitions basis strings by modular residues and enforces $Z$-marginal Knill-Laflamme (KL) equalities via small LPs. The workflow is powered by GPT-5 and implemented within TeXRA (https://texra.ai)-a multi-agent research assistant platform that supports an iterative tool-use loop agent and a derivation-then-edit workflow reasoning agent. We work in a LaTeX-Python environment where agents reason, edit documents, execute code, and synchronize their work to Git/Overleaf. Within this workspace, three roles collaborate: a Synthesis Agent formulates the problem; a Search Agent sweeps/screens candidates and exactifies numerics into rationals; and an Audit Agent independently checks all KL equalities and the induced logical action. As a first step we focus on distance $d=2$ with nondegenerate residues. For code dimension $K\in\{2,3,4\}$ and $n\le6$ qubits, systematic sweeps yield certificate-backed tables cataloging attainable cyclic logical groups-all realized by new codes-e.g., for $K=3$ we obtain order $16$ at $n=6$. From verified instances, Synthesis Agent abstracts recurring structures into closed-form families and proves they satisfy the KL equalities for all parameters. It further demonstrates that SSLP accommodates residue degeneracy by exhibiting a new $((6,4,2))$ code implementing the transversal controlled-phase $diag(1,1,1,i)$. Overall, the workflow recasts diagonal-transversal feasibility as an analytical pipeline executed at scale, combining systematic enumeration with exact analytical reconstruction. It yields reproducible code constructions, supports targeted extensions to larger $K$ and higher distances, and leads toward data-driven classification.

quant-phcs.AIcs.CL+2

Automated Extraction of Fluoropyrimidine Treatment and Treatment-Related Toxicities from Clinical Notes Using Natural Language Processing

Oct 23, 2025
5 authors

Objective: Fluoropyrimidines are widely prescribed for colorectal and breast cancers, but are associated with toxicities such as hand-foot syndrome and cardiotoxicity. Since toxicity documentation is often embedded in clinical notes, we aimed to develop and evaluate natural language processing (NLP) methods to extract treatment and toxicity information. Materials and Methods: We constructed a gold-standard dataset of 236 clinical notes from 204,165 adult oncology patients. Domain experts annotated categories related to treatment regimens and toxicities. We developed rule-based, machine learning-based (Random Forest, Support Vector Machine [SVM], Logistic Regression [LR]), deep learning-based (BERT, ClinicalBERT), and large language models (LLM)-based NLP approaches (zero-shot and error-analysis prompting). Models used an 80:20 train-test split. Results: Sufficient data existed to train and evaluate 5 annotated categories. Error-analysis prompting achieved optimal precision, recall, and F1 scores (F1=1.000) for treatment and toxicities extraction, whereas zero-shot prompting reached F1=1.000 for treatment and F1=0.876 for toxicities extraction.LR and SVM ranked second for toxicities (F1=0.937). Deep learning underperformed, with BERT (F1=0.873 treatment; F1= 0.839 toxicities) and ClinicalBERT (F1=0.873 treatment; F1 = 0.886 toxicities). Rule-based methods served as our baseline with F1 scores of 0.857 in treatment and 0.858 in toxicities. Discussion: LMM-based approaches outperformed all others, followed by machine learning methods. Machine and deep learning approaches were limited by small training data and showed limited generalizability, particularly for rare categories. Conclusion: LLM-based NLP most effectively extracted fluoropyrimidine treatment and toxicity information from clinical notes, and has strong potential to support oncology research and pharmacovigilance.

cs.CLcs.AI

User Perceptions of Privacy and Helpfulness in LLM Responses to Privacy-Sensitive Scenarios

Oct 23, 2025
5 authors

Large language models (LLMs) have seen rapid adoption for tasks such as drafting emails, summarizing meetings, and answering health questions. In such uses, users may need to share private information (e.g., health records, contact details). To evaluate LLMs' ability to identify and redact such private information, prior work developed benchmarks (e.g., ConfAIde, PrivacyLens) with real-life scenarios. Using these benchmarks, researchers have found that LLMs sometimes fail to keep secrets private when responding to complex tasks (e.g., leaking employee salaries in meeting summaries). However, these evaluations rely on LLMs (proxy LLMs) to gauge compliance with privacy norms, overlooking real users' perceptions. Moreover, prior work primarily focused on the privacy-preservation quality of responses, without investigating nuanced differences in helpfulness. To understand how users perceive the privacy-preservation quality and helpfulness of LLM responses to privacy-sensitive scenarios, we conducted a user study with 94 participants using 90 scenarios from PrivacyLens. We found that, when evaluating identical responses to the same scenario, users showed low agreement with each other on the privacy-preservation quality and helpfulness of the LLM response. Further, we found high agreement among five proxy LLMs, while each individual LLM had low correlation with users' evaluations. These results indicate that the privacy and helpfulness of LLM responses are often specific to individuals, and proxy LLMs are poor estimates of how real users would perceive these responses in privacy-sensitive scenarios. Our results suggest the need to conduct user-centered studies on measuring LLMs' ability to help users while preserving privacy. Additionally, future research could investigate ways to improve the alignment between proxy LLMs and users for better estimation of users' perceived privacy and utility.

cs.CLcs.AIcs.HC

Structure-Conditional Minimum Bayes Risk Decoding

Oct 23, 2025
3 authors

Minimum Bayes Risk (MBR) decoding has seen renewed interest as an alternative to traditional generation strategies. While MBR has proven effective in machine translation, where the variability of a language model's outcome space is naturally constrained, it may face challenges in more open-ended tasks such as dialogue or instruction-following. We hypothesise that in such settings, applying MBR with standard similarity-based utility functions may result in selecting responses that are broadly representative of the model's distribution, yet sub-optimal with respect to any particular grouping of generations that share an underlying latent structure. In this work, we introduce three lightweight adaptations to the utility function, designed to make MBR more sensitive to structural variability in the outcome space. To test our hypothesis, we curate a dataset capturing three representative types of latent structure: dialogue act, emotion, and response structure (e.g., a sentence, a paragraph, or a list). We further propose two metrics to evaluate the structural optimality of MBR. Our analysis demonstrates that common similarity-based utility functions fall short by these metrics. In contrast, our proposed adaptations considerably improve structural optimality. Finally, we evaluate our approaches on real-world instruction-following benchmarks, AlpacaEval and MT-Bench, and show that increased structural sensitivity improves generation quality by up to 13.7 percentage points in win rate.

cs.CL