Papers in reinforcement-learning
Explore research papers in the reinforcement-learning category.
Towards General Modality Translation with Contrastive and Predictive Latent Diffusion Bridge
Recent advances in generative modeling have positioned diffusion models as state-of-the-art tools for sampling from complex data distributions. While these models have shown remarkable success across single-modality domains such as images and audio, extending their capabilities to Modality Translation (MT), translating information across different sensory modalities, remains an open challenge. Existing approaches often rely on restrictive assumptions, including shared dimensionality, Gaussian source priors, and modality-specific architectures, which limit their generality and theoretical grounding. In this work, we propose the Latent Denoising Diffusion Bridge Model (LDDBM), a general-purpose framework for modality translation based on a latent-variable extension of Denoising Diffusion Bridge Models. By operating in a shared latent space, our method learns a bridge between arbitrary modalities without requiring aligned dimensions. We introduce a contrastive alignment loss to enforce semantic consistency between paired samples and design a domain-agnostic encoder-decoder architecture tailored for noise prediction in latent space. Additionally, we propose a predictive loss to guide training toward accurate cross-domain translation and explore several training strategies to improve stability. Our approach supports arbitrary modality pairs and performs strongly on diverse MT tasks, including multi-view to 3D shape generation, image super-resolution, and multi-view scene synthesis. Comprehensive experiments and ablations validate the effectiveness of our framework, establishing a new strong baseline in general modality translation. For more information, see our project page: https://sites.google.com/view/lddbm/home.
VAMOS: A Hierarchical Vision-Language-Action Model for Capability-Modulated and Steerable Navigation
A fundamental challenge in robot navigation lies in learning policies that generalize across diverse environments while conforming to the unique physical constraints and capabilities of a specific embodiment (e.g., quadrupeds can walk up stairs, but rovers cannot). We propose VAMOS, a hierarchical VLA that decouples semantic planning from embodiment grounding: a generalist planner learns from diverse, open-world data, while a specialist affordance model learns the robot's physical constraints and capabilities in safe, low-cost simulation. We enabled this separation by carefully designing an interface that lets a high-level planner propose candidate paths directly in image space that the affordance model then evaluates and re-ranks. Our real-world experiments show that VAMOS achieves higher success rates in both indoor and complex outdoor navigation than state-of-the-art model-based and end-to-end learning methods. We also show that our hierarchical design enables cross-embodied navigation across legged and wheeled robots and is easily steerable using natural language. Real-world ablations confirm that the specialist model is key to embodiment grounding, enabling a single high-level planner to be deployed across physically distinct wheeled and legged robots. Finally, this model significantly enhances single-robot reliability, achieving 3X higher success rates by rejecting physically infeasible plans. Website: https://vamos-vla.github.io/
GSWorld: Closed-Loop Photo-Realistic Simulation Suite for Robotic Manipulation
This paper presents GSWorld, a robust, photo-realistic simulator for robotics manipulation that combines 3D Gaussian Splatting with physics engines. Our framework advocates "closing the loop" of developing manipulation policies with reproducible evaluation of policies learned from real-robot data and sim2real policy training without using real robots. To enable photo-realistic rendering of diverse scenes, we propose a new asset format, which we term GSDF (Gaussian Scene Description File), that infuses Gaussian-on-Mesh representation with robot URDF and other objects. With a streamlined reconstruction pipeline, we curate a database of GSDF that contains 3 robot embodiments for single-arm and bimanual manipulation, as well as more than 40 objects. Combining GSDF with physics engines, we demonstrate several immediate interesting applications: (1) learning zero-shot sim2real pixel-to-action manipulation policy with photo-realistic rendering, (2) automated high-quality DAgger data collection for adapting policies to deployment environments, (3) reproducible benchmarking of real-robot manipulation policies in simulation, (4) simulation data collection by virtual teleoperation, and (5) zero-shot sim2real visual reinforcement learning. Website: https://3dgsworld.github.io/.
Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict
On the Detectability of LLM-Generated Text: What Exactly Is LLM-Generated Text?
With the widespread use of large language models (LLMs), many researchers have turned their attention to detecting text generated by them. However, there is no consistent or precise definition of their target, namely "LLM-generated text". Differences in usage scenarios and the diversity of LLMs further increase the difficulty of detection. What is commonly regarded as the detecting target usually represents only a subset of the text that LLMs can potentially produce. Human edits to LLM outputs, together with the subtle influences that LLMs exert on their users, are blurring the line between LLM-generated and human-written text. Existing benchmarks and evaluation approaches do not adequately address the various conditions in real-world detector applications. Hence, the numerical results of detectors are often misunderstood, and their significance is diminishing. Therefore, detectors remain useful under specific conditions, but their results should be interpreted only as references rather than decisive indicators.
Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
The Reality Gap in Robotics: Challenges, Solutions, and Best Practices
Machine learning has facilitated significant advancements across various robotics domains, including navigation, locomotion, and manipulation. Many such achievements have been driven by the extensive use of simulation as a critical tool for training and testing robotic systems prior to their deployment in real-world environments. However, simulations consist of abstractions and approximations that inevitably introduce discrepancies between simulated and real environments, known as the reality gap. These discrepancies significantly hinder the successful transfer of systems from simulation to the real world. Closing this gap remains one of the most pressing challenges in robotics. Recent advances in sim-to-real transfer have demonstrated promising results across various platforms, including locomotion, navigation, and manipulation. By leveraging techniques such as domain randomization, real-to-sim transfer, state and action abstractions, and sim-real co-training, many works have overcome the reality gap. However, challenges persist, and a deeper understanding of the reality gap's root causes and solutions is necessary. In this survey, we present a comprehensive overview of the sim-to-real landscape, highlighting the causes, solutions, and evaluation metrics for the reality gap and sim-to-real transfer.
Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
Simple Context Compression: Mean-Pooling and Multi-Ratio Training
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.
Bayesian Inference of Primordial Magnetic Field Parameters from CMB with Spherical Graph Neural Networks
Deep learning has emerged as a transformative methodology in modern cosmology, providing powerful tools to extract meaningful physical information from complex astronomical datasets. This paper implements a novel Bayesian graph deep learning framework for estimating key cosmological parameters in a primordial magnetic field (PMF) cosmology directly from simulated Cosmic Microwave Background (CMB) maps. Our methodology utilizes DeepSphere, a spherical convolutional neural network architecture specifically designed to respect the spherical geometry of CMB data through HEALPix pixelization. To advance beyond deterministic point estimates and enable robust uncertainty quantification, we integrate Bayesian Neural Networks (BNNs) into the framework, capturing aleatoric and epistemic uncertainties that reflect the model confidence in its predictions. The proposed approach demonstrates exceptional performance, achieving $R^{2}$ scores exceeding 0.89 for the magnetic parameter estimation. We further obtain well-calibrated uncertainty estimates through post-hoc training techniques including Variance Scaling and GPNormal. This integrated DeepSphere-BNNs framework not only delivers accurate parameter estimation from CMB maps with PMF contributions but also provides reliable uncertainty quantification, providing the necessary tools for robust cosmological inference in the era of precision cosmology.
A Coherence-Based Measure of AGI
Recent work by \citet{hendrycks2025agidefinition} formalized \textit{Artificial General Intelligence} (AGI) as the arithmetic mean of proficiencies across cognitive domains derived from the Cattell--Horn--Carroll (CHC) model of human cognition. While elegant, this definition assumes \textit{compensability} -- that exceptional ability in some domains can offset failure in others. True general intelligence, however, should reflect \textit{coherent sufficiency}: balanced competence across all essential domains. We propose a coherence-aware measure of AGI based on the integral of generalized means over a continuum of compensability exponents. This formulation spans arithmetic, geometric, and harmonic regimes, and the resulting \textit{area under the curve} (AUC) quantifies robustness under varying compensability assumptions. Unlike the arithmetic mean, which rewards specialization, the AUC penalizes imbalance and captures inter-domain dependency. Applied to published CHC-based domain scores for GPT-4 and GPT-5, the coherence-adjusted AUC reveals that both systems remain far from general competence despite high arithmetic scores (e.g., GPT-5 at~24\%). Integrating the generalized mean thus yields a principled, interpretable, and stricter foundation for measuring genuine progress toward AGI.
A Use-Case Specific Dataset for Measuring Dimensions of Responsible Performance in LLM-generated Text
Current methods for evaluating large language models (LLMs) typically focus on high-level tasks such as text generation, without targeting a particular AI application. This approach is not sufficient for evaluating LLMs for Responsible AI dimensions like fairness, since protected attributes that are highly relevant in one application may be less relevant in another. In this work, we construct a dataset that is driven by a real-world application (generate a plain-text product description, given a list of product features), parameterized by fairness attributes intersected with gendered adjectives and product categories, yielding a rich set of labeled prompts. We show how to use the data to identify quality, veracity, safety, and fairness gaps in LLMs, contributing a proposal for LLM evaluation paired with a concrete resource for the research community.
Are Large Reasoning Models Good Translation Evaluators? Analysis and Performance Boost
Recent advancements in large reasoning models (LRMs) have introduced an intermediate "thinking" process prior to generating final answers, improving their reasoning capabilities on complex downstream tasks. However, the potential of LRMs as evaluators for machine translation (MT) quality remains underexplored. We provides the first systematic analysis of LRM-as-a-judge in MT evaluation. We identify key challenges, revealing LRMs require tailored evaluation materials, tend to "overthink" simpler instances and have issues with scoring mechanisms leading to overestimation. To address these, we propose to calibrate LRM thinking by training them on synthetic, human-like thinking trajectories. Our experiments on WMT24 Metrics benchmarks demonstrate that this approach largely reduces thinking budgets by ~35x while concurrently improving evaluation performance across different LRM scales from 7B to 32B (e.g., R1-Distill-Qwen-7B achieves a +8.7 correlation point improvement). These findings highlight the potential of efficiently calibrated LRMs to advance fine-grained automatic MT evaluation.
FieldGen: From Teleoperated Pre-Manipulation Trajectories to Field-Guided Data Generation
Large-scale and diverse datasets are vital for training robust robotic manipulation policies, yet existing data collection methods struggle to balance scale, diversity, and quality. Simulation offers scalability but suffers from sim-to-real gaps, while teleoperation yields high-quality demonstrations with limited diversity and high labor cost. We introduce FieldGen, a field-guided data generation framework that enables scalable, diverse, and high-quality real-world data collection with minimal human supervision. FieldGen decomposes manipulation into two stages: a pre-manipulation phase, allowing trajectory diversity, and a fine manipulation phase requiring expert precision. Human demonstrations capture key contact and pose information, after which an attraction field automatically generates diverse trajectories converging to successful configurations. This decoupled design combines scalable trajectory diversity with precise supervision. Moreover, FieldGen-Reward augments generated data with reward annotations to further enhance policy learning. Experiments demonstrate that policies trained with FieldGen achieve higher success rates and improved stability compared to teleoperation-based baselines, while significantly reducing human effort in long-term real-world data collection. Webpage is available at https://fieldgen.github.io/.
RAGRank: Using PageRank to Counter Poisoning in CTI LLM Pipelines
Retrieval-Augmented Generation (RAG) has emerged as the dominant architectural pattern to operationalize Large Language Model (LLM) usage in Cyber Threat Intelligence (CTI) systems. However, this design is susceptible to poisoning attacks, and previously proposed defenses can fail for CTI contexts as cyber threat information is often completely new for emerging attacks, and sophisticated threat actors can mimic legitimate formats, terminology, and stylistic conventions. To address this issue, we propose that the robustness of modern RAG defenses can be accelerated by applying source credibility algorithms on corpora, using PageRank as an example. In our experiments, we demonstrate quantitatively that our algorithm applies a lower authority score to malicious documents while promoting trusted content, using the standardized MS MARCO dataset. We also demonstrate proof-of-concept performance of our algorithm on CTI documents and feeds.
Reinforcement Learning and Consumption-Savings Behavior
This paper demonstrates how reinforcement learning can explain two puzzling empirical patterns in household consumption behavior during economic downturns. I develop a model where agents use Q-learning with neural network approximation to make consumption-savings decisions under income uncertainty, departing from standard rational expectations assumptions. The model replicates two key findings from recent literature: (1) unemployed households with previously low liquid assets exhibit substantially higher marginal propensities to consume (MPCs) out of stimulus transfers compared to high-asset households (0.50 vs 0.34), even when neither group faces borrowing constraints, consistent with Ganong et al. (2024); and (2) households with more past unemployment experiences maintain persistently lower consumption levels after controlling for current economic conditions, a "scarring" effect documented by Malmendier and Shen (2024). Unlike existing explanations based on belief updating about income risk or ex-ante heterogeneity, the reinforcement learning mechanism generates both higher MPCs and lower consumption levels simultaneously through value function approximation errors that evolve with experience. Simulation results closely match the empirical estimates, suggesting that adaptive learning through reinforcement learning provides a unifying framework for understanding how past experiences shape current consumption behavior beyond what current economic conditions would predict.
Empathic Prompting: Non-Verbal Context Integration for Multimodal LLM Conversations
We present Empathic Prompting, a novel framework for multimodal human-AI interaction that enriches Large Language Model (LLM) conversations with implicit non-verbal context. The system integrates a commercial facial expression recognition service to capture users' emotional cues and embeds them as contextual signals during prompting. Unlike traditional multimodal interfaces, empathic prompting requires no explicit user control; instead, it unobtrusively augments textual input with affective information for conversational and smoothness alignment. The architecture is modular and scalable, allowing integration of additional non-verbal modules. We describe the system design, implemented through a locally deployed DeepSeek instance, and report a preliminary service and usability evaluation (N=5). Results show consistent integration of non-verbal input into coherent LLM outputs, with participants highlighting conversational fluidity. Beyond this proof of concept, empathic prompting points to applications in chatbot-mediated communication, particularly in domains like healthcare or education, where users' emotional signals are critical yet often opaque in verbal exchanges.
Thought Communication in Multiagent Collaboration
Natural language has long enabled human cooperation, but its lossy, ambiguous, and indirect nature limits the potential of collective intelligence. While machines are not subject to these constraints, most LLM-based multi-agent systems still rely solely on natural language, exchanging tokens or their embeddings. To go beyond language, we introduce a new paradigm, thought communication, which enables agents to interact directly mind-to-mind, akin to telepathy. To uncover these latent thoughts in a principled way, we formalize the process as a general latent variable model, where agent states are generated by an unknown function of underlying thoughts. We prove that, in a nonparametric setting without auxiliary information, both shared and private latent thoughts between any pair of agents can be identified. Moreover, the global structure of thought sharing, including which agents share which thoughts and how these relationships are structured, can also be recovered with theoretical guarantees. Guided by the established theory, we develop a framework that extracts latent thoughts from all agents prior to communication and assigns each agent the relevant thoughts, along with their sharing patterns. This paradigm naturally extends beyond LLMs to all modalities, as most observational data arise from hidden generative processes. Experiments on both synthetic and real-world benchmarks validate the theory and demonstrate the collaborative advantages of thought communication. We hope this work illuminates the potential of leveraging the hidden world, as many challenges remain unsolvable through surface-level observation alone, regardless of compute or data scale.
Co-Designing Quantum Codes with Transversal Diagonal Gates via Multi-Agent Systems
We present a multi-agent, human-in-the-loop workflow that co-designs quantum codes with prescribed transversal diagonal gates. It builds on the Subset-Sum Linear Programming (SSLP) framework (arXiv:2504.20847), which partitions basis strings by modular residues and enforces $Z$-marginal Knill-Laflamme (KL) equalities via small LPs. The workflow is powered by GPT-5 and implemented within TeXRA (https://texra.ai)-a multi-agent research assistant platform that supports an iterative tool-use loop agent and a derivation-then-edit workflow reasoning agent. We work in a LaTeX-Python environment where agents reason, edit documents, execute code, and synchronize their work to Git/Overleaf. Within this workspace, three roles collaborate: a Synthesis Agent formulates the problem; a Search Agent sweeps/screens candidates and exactifies numerics into rationals; and an Audit Agent independently checks all KL equalities and the induced logical action. As a first step we focus on distance $d=2$ with nondegenerate residues. For code dimension $K\in\{2,3,4\}$ and $n\le6$ qubits, systematic sweeps yield certificate-backed tables cataloging attainable cyclic logical groups-all realized by new codes-e.g., for $K=3$ we obtain order $16$ at $n=6$. From verified instances, Synthesis Agent abstracts recurring structures into closed-form families and proves they satisfy the KL equalities for all parameters. It further demonstrates that SSLP accommodates residue degeneracy by exhibiting a new $((6,4,2))$ code implementing the transversal controlled-phase $diag(1,1,1,i)$. Overall, the workflow recasts diagonal-transversal feasibility as an analytical pipeline executed at scale, combining systematic enumeration with exact analytical reconstruction. It yields reproducible code constructions, supports targeted extensions to larger $K$ and higher distances, and leads toward data-driven classification.
Automated Extraction of Fluoropyrimidine Treatment and Treatment-Related Toxicities from Clinical Notes Using Natural Language Processing
Objective: Fluoropyrimidines are widely prescribed for colorectal and breast cancers, but are associated with toxicities such as hand-foot syndrome and cardiotoxicity. Since toxicity documentation is often embedded in clinical notes, we aimed to develop and evaluate natural language processing (NLP) methods to extract treatment and toxicity information. Materials and Methods: We constructed a gold-standard dataset of 236 clinical notes from 204,165 adult oncology patients. Domain experts annotated categories related to treatment regimens and toxicities. We developed rule-based, machine learning-based (Random Forest, Support Vector Machine [SVM], Logistic Regression [LR]), deep learning-based (BERT, ClinicalBERT), and large language models (LLM)-based NLP approaches (zero-shot and error-analysis prompting). Models used an 80:20 train-test split. Results: Sufficient data existed to train and evaluate 5 annotated categories. Error-analysis prompting achieved optimal precision, recall, and F1 scores (F1=1.000) for treatment and toxicities extraction, whereas zero-shot prompting reached F1=1.000 for treatment and F1=0.876 for toxicities extraction.LR and SVM ranked second for toxicities (F1=0.937). Deep learning underperformed, with BERT (F1=0.873 treatment; F1= 0.839 toxicities) and ClinicalBERT (F1=0.873 treatment; F1 = 0.886 toxicities). Rule-based methods served as our baseline with F1 scores of 0.857 in treatment and 0.858 in toxicities. Discussion: LMM-based approaches outperformed all others, followed by machine learning methods. Machine and deep learning approaches were limited by small training data and showed limited generalizability, particularly for rare categories. Conclusion: LLM-based NLP most effectively extracted fluoropyrimidine treatment and toxicity information from clinical notes, and has strong potential to support oncology research and pharmacovigilance.
User Perceptions of Privacy and Helpfulness in LLM Responses to Privacy-Sensitive Scenarios
Large language models (LLMs) have seen rapid adoption for tasks such as drafting emails, summarizing meetings, and answering health questions. In such uses, users may need to share private information (e.g., health records, contact details). To evaluate LLMs' ability to identify and redact such private information, prior work developed benchmarks (e.g., ConfAIde, PrivacyLens) with real-life scenarios. Using these benchmarks, researchers have found that LLMs sometimes fail to keep secrets private when responding to complex tasks (e.g., leaking employee salaries in meeting summaries). However, these evaluations rely on LLMs (proxy LLMs) to gauge compliance with privacy norms, overlooking real users' perceptions. Moreover, prior work primarily focused on the privacy-preservation quality of responses, without investigating nuanced differences in helpfulness. To understand how users perceive the privacy-preservation quality and helpfulness of LLM responses to privacy-sensitive scenarios, we conducted a user study with 94 participants using 90 scenarios from PrivacyLens. We found that, when evaluating identical responses to the same scenario, users showed low agreement with each other on the privacy-preservation quality and helpfulness of the LLM response. Further, we found high agreement among five proxy LLMs, while each individual LLM had low correlation with users' evaluations. These results indicate that the privacy and helpfulness of LLM responses are often specific to individuals, and proxy LLMs are poor estimates of how real users would perceive these responses in privacy-sensitive scenarios. Our results suggest the need to conduct user-centered studies on measuring LLMs' ability to help users while preserving privacy. Additionally, future research could investigate ways to improve the alignment between proxy LLMs and users for better estimation of users' perceived privacy and utility.
Unsupervised Anomaly Prediction with N-BEATS and Graph Neural Network in Multi-variate Semiconductor Process Time Series
Semiconductor manufacturing is an extremely complex and precision-driven process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series analysis has emerged as a critical field for real-time monitoring and fault detection in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high dimensionality of sensor data and severe class imbalance due to the rarity of true faults. Furthermore, the complex interdependencies between variables complicate both anomaly prediction and root-cause-analysis. This paper proposes two novel approaches to advance the field from anomaly detection to anomaly prediction, an essential step toward enabling real-time process correction and proactive fault prevention. The proposed anomaly prediction framework contains two main stages: (a) training a forecasting model on a dataset assumed to contain no anomalies, and (b) performing forecast on unseen time series data. The forecast is compared with the forecast of the trained signal. Deviations beyond a predefined threshold are flagged as anomalies. The two approaches differ in the forecasting model employed. The first assumes independence between variables by utilizing the N-BEATS model for univariate time series forecasting. The second lifts this assumption by utilizing a Graph Neural Network (GNN) to capture inter-variable relationships. Both models demonstrate strong forecasting performance up to a horizon of 20 time points and maintain stable anomaly prediction up to 50 time points. The GNN consistently outperforms the N-BEATS model while requiring significantly fewer trainable parameters and lower computational cost. These results position the GNN as promising solution for online anomaly forecasting to be deployed in manufacturing environments.
Real-Time Gait Adaptation for Quadrupeds using Model Predictive Control and Reinforcement Learning
Model-free reinforcement learning (RL) has enabled adaptable and agile quadruped locomotion; however, policies often converge to a single gait, leading to suboptimal performance. Traditionally, Model Predictive Control (MPC) has been extensively used to obtain task-specific optimal policies but lacks the ability to adapt to varying environments. To address these limitations, we propose an optimization framework for real-time gait adaptation in a continuous gait space, combining the Model Predictive Path Integral (MPPI) algorithm with a Dreamer module to produce adaptive and optimal policies for quadruped locomotion. At each time step, MPPI jointly optimizes the actions and gait variables using a learned Dreamer reward that promotes velocity tracking, energy efficiency, stability, and smooth transitions, while penalizing abrupt gait changes. A learned value function is incorporated as terminal reward, extending the formulation to an infinite-horizon planner. We evaluate our framework in simulation on the Unitree Go1, demonstrating an average reduction of up to 36.48\% in energy consumption across varying target speeds, while maintaining accurate tracking and adaptive, task-appropriate gaits.
Fusing Narrative Semantics for Financial Volatility Forecasting
We introduce M2VN: Multi-Modal Volatility Network, a novel deep learning-based framework for financial volatility forecasting that unifies time series features with unstructured news data. M2VN leverages the representational power of deep neural networks to address two key challenges in this domain: (i) aligning and fusing heterogeneous data modalities, numerical financial data and textual information, and (ii) mitigating look-ahead bias that can undermine the validity of financial models. To achieve this, M2VN combines open-source market features with news embeddings generated by Time Machine GPT, a recently introduced point-in-time LLM, ensuring temporal integrity. An auxiliary alignment loss is introduced to enhance the integration of structured and unstructured data within the deep learning architecture. Extensive experiments demonstrate that M2VN consistently outperforms existing baselines, underscoring its practical value for risk management and financial decision-making in dynamic markets.
Exploring Large Language Models for Access Control Policy Synthesis and Summarization
Cloud computing is ubiquitous, with a growing number of services being hosted on the cloud every day. Typical cloud compute systems allow administrators to write policies implementing access control rules which specify how access to private data is governed. These policies must be manually written, and due to their complexity can often be error prone. Moreover, existing policies often implement complex access control specifications and thus can be difficult to precisely analyze in determining their behavior works exactly as intended. Recently, Large Language Models (LLMs) have shown great success in automated code synthesis and summarization. Given this success, they could potentially be used for automatically generating access control policies or aid in understanding existing policies. In this paper, we explore the effectiveness of LLMs for access control policy synthesis and summarization. Specifically, we first investigate diverse LLMs for access control policy synthesis, finding that: although LLMs can effectively generate syntactically correct policies, they have permissiveness issues, generating policies equivalent to the given specification 45.8% of the time for non-reasoning LLMs, and 93.7% of the time for reasoning LLMs. We then investigate how LLMs can be used to analyze policies by introducing a novel semantic-based request summarization approach which leverages LLMs to generate a precise characterization of the requests allowed by a policy. Our results show that while there are significant hurdles in leveraging LLMs for automated policy generation, LLMs show promising results when combined with symbolic approaches in analyzing existing policies.
Plan Then Retrieve: Reinforcement Learning-Guided Complex Reasoning over Knowledge Graphs
Knowledge Graph Question Answering aims to answer natural language questions by reasoning over structured knowledge graphs. While large language models have advanced KGQA through their strong reasoning capabilities, existing methods continue to struggle to fully exploit both the rich knowledge encoded in KGs and the reasoning capabilities of LLMs, particularly in complex scenarios. They often assume complete KG coverage and lack mechanisms to judge when external information is needed, and their reasoning remains locally myopic, failing to maintain coherent multi-step planning, leading to reasoning failures even when relevant knowledge exists. We propose Graph-RFT, a novel two-stage reinforcement fine-tuning KGQA framework with a 'plan-KGsearch-and-Websearch-during-think' paradigm, that enables LLMs to perform autonomous planning and adaptive retrieval scheduling across KG and web sources under incomplete knowledge conditions. Graph-RFT introduces a chain-of-thought fine-tuning method with a customized plan-retrieval dataset activates structured reasoning and resolves the GRPO cold-start problem. It then introduces a novel plan-retrieval guided reinforcement learning process integrates explicit planning and retrieval actions with a multi-reward design, enabling coverage-aware retrieval scheduling. It employs a Cartesian-inspired planning module to decompose complex questions into ordered subquestions, and logical expression to guide tool invocation for globally consistent multi-step reasoning. This reasoning retrieval process is optimized with a multi-reward combining outcome and retrieval specific signals, enabling the model to learn when and how to combine KG and web retrieval effectively.
Neural Diversity Regularizes Hallucinations in Small Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. Inspired by portfolio theory, where uncorrelated assets reduce risk by $\sqrt{P}$, we prove hallucination probability is bounded by representational correlation: $P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$, which predicts that language models need an optimal amount of neurodiversity. To validate this, we introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and demonstrate that ND-LoRA reduces hallucinations by up to 25.6% (and 14.6% on average) without degrading general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational analyses indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different amounts of optimal neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
A Scalable, Causal, and Energy Efficient Framework for Neural Decoding with Spiking Neural Networks
Brain-computer interfaces (BCIs) promise to enable vital functions, such as speech and prosthetic control, for individuals with neuromotor impairments. Central to their success are neural decoders, models that map neural activity to intended behavior. Current learning-based decoding approaches fall into two classes: simple, causal models that lack generalization, or complex, non-causal models that generalize and scale offline but struggle in real-time settings. Both face a common challenge, their reliance on power-hungry artificial neural network backbones, which makes integration into real-world, resource-limited systems difficult. Spiking neural networks (SNNs) offer a promising alternative. Because they operate causally these models are suitable for real-time use, and their low energy demands make them ideal for battery-constrained environments. To this end, we introduce Spikachu: a scalable, causal, and energy-efficient neural decoding framework based on SNNs. Our approach processes binned spikes directly by projecting them into a shared latent space, where spiking modules, adapted to the timing of the input, extract relevant features; these latent representations are then integrated and decoded to generate behavioral predictions. We evaluate our approach on 113 recording sessions from 6 non-human primates, totaling 43 hours of recordings. Our method outperforms causal baselines when trained on single sessions using between 2.26 and 418.81 times less energy. Furthermore, we demonstrate that scaling up training to multiple sessions and subjects improves performance and enables few-shot transfer to unseen sessions, subjects, and tasks. Overall, Spikachu introduces a scalable, online-compatible neural decoding framework based on SNNs, whose performance is competitive relative to state-of-the-art models while consuming orders of magnitude less energy.
R2-SVC: Towards Real-World Robust and Expressive Zero-shot Singing Voice Conversion
In real-world singing voice conversion (SVC) applications, environmental noise and the demand for expressive output pose significant challenges. Conventional methods, however, are typically designed without accounting for real deployment scenarios, as both training and inference usually rely on clean data. This mismatch hinders practical use, given the inevitable presence of diverse noise sources and artifacts from music separation. To tackle these issues, we propose R2-SVC, a robust and expressive SVC framework. First, we introduce simulation-based robustness enhancement through random fundamental frequency ($F_0$) perturbations and music separation artifact simulations (e.g., reverberation, echo), substantially improving performance under noisy conditions. Second, we enrich speaker representation using domain-specific singing data: alongside clean vocals, we incorporate DNSMOS-filtered separated vocals and public singing corpora, enabling the model to preserve speaker timbre while capturing singing style nuances. Third, we integrate the Neural Source-Filter (NSF) model to explicitly represent harmonic and noise components, enhancing the naturalness and controllability of converted singing. R2-SVC achieves state-of-the-art results on multiple SVC benchmarks under both clean and noisy conditions.
GRACE: GRaph-based Addiction Care prEdiction
Determining the appropriate locus of care for addiction patients is one of the most critical clinical decisions that affects patient treatment outcomes and effective use of resources. With a lack of sufficient specialized treatment resources, such as inpatient beds or staff, there is an unmet need to develop an automated framework for the same. Current decision-making approaches suffer from severe class imbalances in addiction datasets. To address this limitation, we propose a novel graph neural network (GRACE) framework that formalizes locus of care prediction as a structured learning problem. Further, we perform extensive feature engineering and propose a new approach of obtaining an unbiased meta-graph to train a GNN to overcome the class imbalance problem. Experimental results in real-world data show an improvement of 11-35% in terms of the F1 score of the minority class over competitive baselines. The codes and note embeddings are available at https://anonymous.4open.science/r/GRACE-F8E1/.
The Shape of Reasoning: Topological Analysis of Reasoning Traces in Large Language Models
Evaluating the quality of reasoning traces from large language models remains understudied, labor-intensive, and unreliable: current practice relies on expert rubrics, manual annotation, and slow pairwise judgments. Automated efforts are dominated by graph-based proxies that quantify structural connectivity but do not clarify what constitutes high-quality reasoning; such abstractions can be overly simplistic for inherently complex processes. We introduce a topological data analysis (TDA)-based evaluation framework that captures the geometry of reasoning traces and enables label-efficient, automated assessment. In our empirical study, topological features yield substantially higher predictive power for assessing reasoning quality than standard graph metrics, suggesting that effective reasoning is better captured by higher-dimensional geometric structures rather than purely relational graphs. We further show that a compact, stable set of topological features reliably indicates trace quality, offering a practical signal for future reinforcement learning algorithms.
Finding the Sweet Spot: Trading Quality, Cost, and Speed During Inference-Time LLM Reflection
As Large Language Models (LLMs) continue to evolve, practitioners face increasing options for enhancing inference-time performance without model retraining, including budget tuning and multi-step techniques like self-reflection. While these methods improve output quality, they create complex trade-offs among accuracy, cost, and latency that remain poorly understood across different domains. This paper systematically compares self-reflection and budget tuning across mathematical reasoning and translation tasks. We evaluate prominent LLMs, including Anthropic Claude, Amazon Nova, and Mistral families, along with other models under varying reflection depths and compute budgets to derive Pareto optimal performance frontiers. Our analysis reveals substantial domain dependent variation in self-reflection effectiveness, with performance gains up to 220\% in mathematical reasoning. We further investigate how reflection round depth and feedback mechanism quality influence performance across model families. To validate our findings in a real-world setting, we deploy a self-reflection enhanced marketing content localisation system at Lounge by Zalando, where it shows market-dependent effectiveness, reinforcing the importance of domain specific evaluation when deploying these techniques. Our results provide actionable guidance for selecting optimal inference strategies given specific domains and resource constraints. We open source our self-reflection implementation for reproducibility at https://github.com/aws-samples/sample-genai-reflection-for-bedrock.
The Reasoning Lingua Franca: A Double-Edged Sword for Multilingual AI
Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by question's language reasoning.
Integrating Machine Learning into Belief-Desire-Intention Agents: Current Advances and Open Challenges
Thanks to the remarkable human-like capabilities of machine learning (ML) models in perceptual and cognitive tasks, frameworks integrating ML within rational agent architectures are gaining traction. Yet, the landscape remains fragmented and incoherent, often focusing on embedding ML into generic agent containers while overlooking the expressive power of rational architectures--such as Belief-Desire-Intention (BDI) agents. This paper presents a fine-grained systematisation of existing approaches, using the BDI paradigm as a reference. Our analysis illustrates the fast-evolving literature on rational agents enhanced by ML, and identifies key research opportunities and open challenges for designing effective rational ML agents.
Fluidity Index: Next-Generation Super-intelligence Benchmarks
This paper introduces the Fluidity Index (FI) to quantify model adaptability in dynamic, scaling environments. The benchmark evaluates response accuracy based on deviations in initial, current, and future environment states, assessing context switching and continuity. We distinguish between closed-ended and open-ended benchmarks, prioritizing closed-loop open-ended real-world benchmarks to test adaptability. The approach measures a model's ability to understand, predict, and adjust to state changes in scaling environments. A truly super-intelligent model should exhibit at least second-order adaptability, enabling self-sustained computation through digital replenishment for optimal fluidity.
Why Did Apple Fall To The Ground: Evaluating Curiosity In Large Language Model
Curiosity serves as a pivotal conduit for human beings to discover and learn new knowledge. Recent advancements of large language models (LLMs) in natural language processing have sparked discussions regarding whether these models possess capability of curiosity-driven learning akin to humans. In this paper, starting from the human curiosity assessment questionnaire Five-Dimensional Curiosity scale Revised (5DCR), we design a comprehensive evaluation framework that covers dimensions such as Information Seeking, Thrill Seeking, and Social Curiosity to assess the extent of curiosity exhibited by LLMs. The results demonstrate that LLMs exhibit a stronger thirst for knowledge than humans but still tend to make conservative choices when faced with uncertain environments. We further investigated the relationship between curiosity and thinking of LLMs, confirming that curious behaviors can enhance the model's reasoning and active learning abilities. These findings suggest that LLMs have the potential to exhibit curiosity similar to that of humans, providing experimental support for the future development of learning capabilities and innovative research in LLMs.
Deep Learning in Dental Image Analysis: A Systematic Review of Datasets, Methodologies, and Emerging Challenges
Efficient analysis and processing of dental images are crucial for dentists to achieve accurate diagnosis and optimal treatment planning. However, dental imaging inherently poses several challenges, such as low contrast, metallic artifacts, and variations in projection angles. Combined with the subjectivity arising from differences in clinicians' expertise, manual interpretation often proves time-consuming and prone to inconsistency. Artificial intelligence (AI)-based automated dental image analysis (DIA) offers a promising solution to these issues and has become an integral part of computer-aided dental diagnosis and treatment. Among various AI technologies, deep learning (DL) stands out as the most widely applied and influential approach due to its superior feature extraction and representation capabilities. To comprehensively summarize recent progress in this field, we focus on the two fundamental aspects of DL research-datasets and models. In this paper, we systematically review 260 studies on DL applications in DIA, including 49 papers on publicly available dental datasets and 211 papers on DL-based algorithms. We first introduce the basic concepts of dental imaging and summarize the characteristics and acquisition methods of existing datasets. Then, we present the foundational techniques of DL and categorize relevant models and algorithms according to different DIA tasks, analyzing their network architectures, optimization strategies, training methods, and performance. Furthermore, we summarize commonly used training and evaluation metrics in the DIA domain. Finally, we discuss the current challenges of existing research and outline potential future directions. We hope that this work provides a valuable and systematic reference for researchers in this field. All supplementary materials and detailed comparison tables will be made publicly available on GitHub.
Towards Reliable Evaluation of Large Language Models for Multilingual and Multimodal E-Commerce Applications
Large Language Models (LLMs) excel on general-purpose NLP benchmarks, yet their capabilities in specialized domains remain underexplored. In e-commerce, existing evaluations-such as EcomInstruct, ChineseEcomQA, eCeLLM, and Shopping MMLU-suffer from limited task diversity (e.g., lacking product guidance and after-sales issues), limited task modalities (e.g., absence of multimodal data), synthetic or curated data, and a narrow focus on English and Chinese, leaving practitioners without reliable tools to assess models on complex, real-world shopping scenarios. We introduce EcomEval, a comprehensive multilingual and multimodal benchmark for evaluating LLMs in e-commerce. EcomEval covers six categories and 37 tasks (including 8 multimodal tasks), sourced primarily from authentic customer queries and transaction logs, reflecting the noisy and heterogeneous nature of real business interactions. To ensure both quality and scalability of reference answers, we adopt a semi-automatic pipeline in which large models draft candidate responses subsequently reviewed and modified by over 50 expert annotators with strong e-commerce and multilingual expertise. We define difficulty levels for each question and task category by averaging evaluation scores across models with different sizes and capabilities, enabling challenge-oriented and fine-grained assessment. EcomEval also spans seven languages-including five low-resource Southeast Asian languages-offering a multilingual perspective absent from prior work.
Quantum Processing Unit (QPU) processing time Prediction with Machine Learning
This paper explores the application of machine learning (ML) techniques in predicting the QPU processing time of quantum jobs. By leveraging ML algorithms, this study introduces predictive models that are designed to enhance operational efficiency in quantum computing systems. Using a dataset of about 150,000 jobs that follow the IBM Quantum schema, we employ ML methods based on Gradient-Boosting (LightGBM) to predict the QPU processing times, incorporating data preprocessing methods to improve model accuracy. The results demonstrate the effectiveness of ML in forecasting quantum jobs. This improvement can have implications on improving resource management and scheduling within quantum computing frameworks. This research not only highlights the potential of ML in refining quantum job predictions but also sets a foundation for integrating AI-driven tools in advanced quantum computing operations.
Equitable Survival Prediction: A Fairness-Aware Survival Modeling (FASM) Approach
As machine learning models become increasingly integrated into healthcare, structural inequities and social biases embedded in clinical data can be perpetuated or even amplified by data-driven models. In survival analysis, censoring and time dynamics can further add complexity to fair model development. Additionally, algorithmic fairness approaches often overlook disparities in cross-group rankings, e.g., high-risk Black patients may be ranked below lower-risk White patients who do not experience the event of mortality. Such misranking can reinforce biological essentialism and undermine equitable care. We propose a Fairness-Aware Survival Modeling (FASM), designed to mitigate algorithmic bias regarding both intra-group and cross-group risk rankings over time. Using breast cancer prognosis as a representative case and applying FASM to SEER breast cancer data, we show that FASM substantially improves fairness while preserving discrimination performance comparable to fairness-unaware survival models. Time-stratified evaluations show that FASM maintains stable fairness over a 10-year horizon, with the greatest improvements observed during the mid-term of follow-up. Our approach enables the development of survival models that prioritize both accuracy and equity in clinical decision-making, advancing fairness as a core principle in clinical care.
Towards the Formalization of a Trustworthy AI for Mining Interpretable Models explOiting Sophisticated Algorithms
Interpretable-by-design models are crucial for fostering trust, accountability, and safe adoption of automated decision-making models in real-world applications. In this paper we formalize the ground for the MIMOSA (Mining Interpretable Models explOiting Sophisticated Algorithms) framework, a comprehensive methodology for generating predictive models that balance interpretability with performance while embedding key ethical properties. We formally define here the supervised learning setting across diverse decision-making tasks and data types, including tabular data, time series, images, text, transactions, and trajectories. We characterize three major families of interpretable models: feature importance, rule, and instance based models. For each family, we analyze their interpretability dimensions, reasoning mechanisms, and complexity. Beyond interpretability, we formalize three critical ethical properties, namely causality, fairness, and privacy, providing formal definitions, evaluation metrics, and verification procedures for each. We then examine the inherent trade-offs between these properties and discuss how privacy requirements, fairness constraints, and causal reasoning can be embedded within interpretable pipelines. By evaluating ethical measures during model generation, this framework establishes the theoretical foundations for developing AI systems that are not only accurate and interpretable but also fair, privacy-preserving, and causally aware, i.e., trustworthy.
Black Box Absorption: LLMs Undermining Innovative Ideas
Large Language Models are increasingly adopted as critical tools for accelerating innovation. This paper identifies and formalizes a systemic risk inherent in this paradigm: \textbf{Black Box Absorption}. We define this as the process by which the opaque internal architectures of LLM platforms, often operated by large-scale service providers, can internalize, generalize, and repurpose novel concepts contributed by users during interaction. This mechanism threatens to undermine the foundational principles of innovation economics by creating severe informational and structural asymmetries between individual creators and platform operators, thereby jeopardizing the long-term sustainability of the innovation ecosystem. To analyze this challenge, we introduce two core concepts: the idea unit, representing the transportable functional logic of an innovation, and idea safety, a multidimensional standard for its protection. This paper analyzes the mechanisms of absorption and proposes a concrete governance and engineering agenda to mitigate these risks, ensuring that creator contributions remain traceable, controllable, and equitable.
PSO-XAI: A PSO-Enhanced Explainable AI Framework for Reliable Breast Cancer Detection
Breast cancer is considered the most critical and frequently diagnosed cancer in women worldwide, leading to an increase in cancer-related mortality. Early and accurate detection is crucial as it can help mitigate possible threats while improving survival rates. In terms of prediction, conventional diagnostic methods are often limited by variability, cost, and, most importantly, risk of misdiagnosis. To address these challenges, machine learning (ML) has emerged as a powerful tool for computer-aided diagnosis, with feature selection playing a vital role in improving model performance and interpretability. This research study proposes an integrated framework that incorporates customized Particle Swarm Optimization (PSO) for feature selection. This framework has been evaluated on a comprehensive set of 29 different models, spanning classical classifiers, ensemble techniques, neural networks, probabilistic algorithms, and instance-based algorithms. To ensure interpretability and clinical relevance, the study uses cross-validation in conjunction with explainable AI methods. Experimental evaluation showed that the proposed approach achieved a superior score of 99.1\% across all performance metrics, including accuracy and precision, while effectively reducing dimensionality and providing transparent, model-agnostic explanations. The results highlight the potential of combining swarm intelligence with explainable ML for robust, trustworthy, and clinically meaningful breast cancer diagnosis.
BUSTED at AraGenEval Shared Task: A Comparative Study of Transformer-Based Models for Arabic AI-Generated Text Detection
This paper details our submission to the Ara- GenEval Shared Task on Arabic AI-generated text detection, where our team, BUSTED, se- cured 5th place. We investigated the effec- tiveness of three pre-trained transformer mod- els: AraELECTRA, CAMeLBERT, and XLM- RoBERTa. Our approach involved fine-tuning each model on the provided dataset for a binary classification task. Our findings revealed a sur- prising result: the multilingual XLM-RoBERTa model achieved the highest performance with an F1 score of 0.7701, outperforming the spe- cialized Arabic models. This work underscores the complexities of AI-generated text detection and highlights the strong generalization capa- bilities of multilingual models.
Practical Code RAG at Scale: Task-Aware Retrieval Design Choices under Compute Budgets
We study retrieval design for code-focused generation tasks under realistic compute budgets. Using two complementary tasks from Long Code Arena -- code completion and bug localization -- we systematically compare retrieval configurations across various context window sizes along three axes: (i) chunking strategy, (ii) similarity scoring, and (iii) splitting granularity. (1) For PL-PL, sparse BM25 with word-level splitting is the most effective and practical, significantly outperforming dense alternatives while being an order of magnitude faster. (2) For NL-PL, proprietary dense encoders (Voyager-3 family) consistently beat sparse retrievers, however requiring 100x larger latency. (3) Optimal chunk size scales with available context: 32-64 line chunks work best at small budgets, and whole-file retrieval becomes competitive at 16000 tokens. (4) Simple line-based chunking matches syntax-aware splitting across budgets. (5) Retrieval latency varies by up to 200x across configurations; BPE-based splitting is needlessly slow, and BM25 + word splitting offers the best quality-latency trade-off. Thus, we provide evidence-based recommendations for implementing effective code-oriented RAG systems based on task requirements, model constraints, and computational efficiency.
Generalizable Reasoning through Compositional Energy Minimization
Generalization is a key challenge in machine learning, specifically in reasoning tasks, where models are expected to solve problems more complex than those encountered during training. Existing approaches typically train reasoning models in an end-to-end fashion, directly mapping input instances to solutions. While this allows models to learn useful heuristics from data, it often results in limited generalization beyond the training distribution. In this work, we propose a novel approach to reasoning generalization by learning energy landscapes over the solution spaces of smaller, more tractable subproblems. At test time, we construct a global energy landscape for a given problem by combining the energy functions of multiple subproblems. This compositional approach enables the incorporation of additional constraints during inference, allowing the construction of energy landscapes for problems of increasing difficulty. To improve the sample quality from this newly constructed energy landscape, we introduce Parallel Energy Minimization (PEM). We evaluate our approach on a wide set of reasoning problems. Our method outperforms existing state-of-the-art methods, demonstrating its ability to generalize to larger and more complex problems. Project website can be found at: https://alexoarga.github.io/compositional_reasoning/
OnlineSplatter: Pose-Free Online 3D Reconstruction for Free-Moving Objects
Free-moving object reconstruction from monocular video remains challenging, particularly without reliable pose or depth cues and under arbitrary object motion. We introduce OnlineSplatter, a novel online feed-forward framework generating high-quality, object-centric 3D Gaussians directly from RGB frames without requiring camera pose, depth priors, or bundle optimization. Our approach anchors reconstruction using the first frame and progressively refines the object representation through a dense Gaussian primitive field, maintaining constant computational cost regardless of video sequence length. Our core contribution is a dual-key memory module combining latent appearance-geometry keys with explicit directional keys, robustly fusing current frame features with temporally aggregated object states. This design enables effective handling of free-moving objects via spatial-guided memory readout and an efficient sparsification mechanism, ensuring comprehensive yet compact object coverage. Evaluations on real-world datasets demonstrate that OnlineSplatter significantly outperforms state-of-the-art pose-free reconstruction baselines, consistently improving with more observations while maintaining constant memory and runtime.
Efficient Algorithms for Computing Random Walk Centrality
Random walk centrality is a fundamental metric in graph mining for quantifying node importance and influence, defined as the weighted average of hitting times to a node from all other nodes. Despite its ability to capture rich graph structural information and its wide range of applications, computing this measure for large networks remains impractical due to the computational demands of existing methods. In this paper, we present a novel formulation of random walk centrality, underpinning two scalable algorithms: one leveraging approximate Cholesky factorization and sparse inverse estimation, while the other sampling rooted spanning trees. Both algorithms operate in near-linear time and provide strong approximation guarantees. Extensive experiments on large real-world networks, including one with over 10 million nodes, demonstrate the efficiency and approximation quality of the proposed algorithms.
What Defines Good Reasoning in LLMs? Dissecting Reasoning Steps with Multi-Aspect Evaluation
Evaluating large language models (LLMs) on final-answer correctness is the dominant paradigm. This approach, however, provides a coarse signal for model improvement and overlooks the quality of the underlying reasoning process. We argue that a more granular evaluation of reasoning offers a more effective path to building robust models. We decompose reasoning quality into two dimensions: relevance and coherence. Relevance measures if a step is grounded in the problem; coherence measures if it follows logically from prior steps. To measure these aspects reliably, we introduce causal stepwise evaluation (CaSE). This method assesses each reasoning step using only its preceding context, which avoids hindsight bias. We validate CaSE against human judgments on our new expert-annotated benchmarks, MRa-GSM8K and MRa-MATH. More importantly, we show that curating training data with CaSE-evaluated relevance and coherence directly improves final task performance. Our work provides a scalable framework for analyzing, debugging, and improving LLM reasoning, demonstrating the practical value of moving beyond validity checks.
Resounding Acoustic Fields with Reciprocity
Achieving immersive auditory experiences in virtual environments requires flexible sound modeling that supports dynamic source positions. In this paper, we introduce a task called resounding, which aims to estimate room impulse responses at arbitrary emitter location from a sparse set of measured emitter positions, analogous to the relighting problem in vision. We leverage the reciprocity property and introduce Versa, a physics-inspired approach to facilitating acoustic field learning. Our method creates physically valid samples with dense virtual emitter positions by exchanging emitter and listener poses. We also identify challenges in deploying reciprocity due to emitter/listener gain patterns and propose a self-supervised learning approach to address them. Results show that Versa substantially improve the performance of acoustic field learning on both simulated and real-world datasets across different metrics. Perceptual user studies show that Versa can greatly improve the immersive spatial sound experience. Code, dataset and demo videos are available on the project website: https://waves.seas.upenn.edu/projects/versa.
Unsupervised Domain Adaptation via Similarity-based Prototypes for Cross-Modality Segmentation
Deep learning models have achieved great success on various vision challenges, but a well-trained model would face drastic performance degradation when applied to unseen data. Since the model is sensitive to domain shift, unsupervised domain adaptation attempts to reduce the domain gap and avoid costly annotation of unseen domains. This paper proposes a novel framework for cross-modality segmentation via similarity-based prototypes. In specific, we learn class-wise prototypes within an embedding space, then introduce a similarity constraint to make these prototypes representative for each semantic class while separable from different classes. Moreover, we use dictionaries to store prototypes extracted from different images, which prevents the class-missing problem and enables the contrastive learning of prototypes, and further improves performance. Extensive experiments show that our method achieves better results than other state-of-the-art methods.
Transferable Graph Learning for Transmission Congestion Management via Busbar Splitting
Network topology optimization (NTO) via busbar splitting can mitigate transmission grid congestion and reduce redispatch costs. However, solving this mixed-integer non-linear problem for large-scale systems in near-real-time is currently intractable with existing solvers. Machine learning (ML) approaches have emerged as a promising alternative, but they have limited generalization to unseen topologies, varying operating conditions, and different systems, which limits their practical applicability. This paper formulates NTO for congestion management problem considering linearized AC PF, and proposes a graph neural network (GNN)-accelerated approach. We develop a heterogeneous edge-aware message passing NN to predict effective busbar splitting actions as candidate NTO solutions. The proposed GNN captures local flow patterns, achieves generalization to unseen topology changes, and improves transferability across systems. Case studies show up to 4 orders-of-magnitude speed-up, delivering AC-feasible solutions within one minute and a 2.3% optimality gap on the GOC 2000-bus system. These results demonstrate a significant step toward near-real-time NTO for large-scale systems with topology and cross-system generalization.