FairGU: Fairness-aware Graph Unlearning in Social Network

2026年1月14日
9 authors

概要

Graph unlearning has emerged as a critical mechanism for supporting sustainable and privacy-preserving social networks, enabling models to remove the influence of deleted nodes and thereby better safeguard user information. However, we observe that existing graph unlearning techniques insufficiently protect sensitive attributes, often leading to degraded algorithmic fairness compared with traditional graph learning methods. To address this gap, we introduce FairGU, a fairness-aware graph unlearning framework designed to preserve both utility and fairness during the unlearning process. FairGU integrates a dedicated fairness-aware module with effective data protection strategies, ensuring that sensitive attributes are neither inadvertently amplified nor structurally exposed when nodes are removed. Through extensive experiments on multiple real-world datasets, we demonstrate that FairGU consistently outperforms state-of-the-art graph unlearning methods and fairness-enhanced graph learning baselines in terms of both accuracy and fairness metrics. Our findings highlight a previously overlooked risk in current unlearning practices and establish FairGU as a robust and equitable solution for the next generation of socially sustainable networked systems. The codes are available at https://github.com/LuoRenqiang/FairGU.

カテゴリ

著者