FACTUM: Mechanistic Detection of Citation Hallucination in Long-Form RAG
摘要
Retrieval-Augmented Generation (RAG) models are critically undermined by citation hallucinations, a deceptive failure where a model confidently cites a source that fails to support its claim. Existing work often attributes hallucination to a simple over-reliance on the model's parametric knowledge. We challenge this view and introduce FACTUM (Framework for Attesting Citation Trustworthiness via Underlying Mechanisms), a framework of four mechanistic scores measuring the distinct contributions of a model's attention and FFN pathways, and the alignment between them. Our analysis reveals two consistent signatures of correct citation: a significantly stronger contribution from the model's parametric knowledge and greater use of the attention sink for information synthesis. Crucially, we find the signature of a correct citation is not static but evolves with model scale. For example, the signature of a correct citation for the Llama-3.2-3B model is marked by higher pathway alignment, whereas for the Llama-3.1-8B model, it is characterized by lower alignment, where pathways contribute more distinct, orthogonal information. By capturing this complex, evolving signature, FACTUM outperforms state-of-the-art baselines by up to 37.5% in AUC. Our findings reframe citation hallucination as a complex, scale-dependent interplay between internal mechanisms, paving the way for more nuanced and reliable RAG systems.