SiliconHealth: A Complete Low-Cost Blockchain Healthcare Infrastructure for Resource-Constrained Regions Using Repurposed Bitcoin Mining ASICs

2026年1月14日
3 authors

摘要

This paper presents SiliconHealth, a comprehensive blockchain-based healthcare infrastructure designed for resource-constrained regions, particularly sub-Saharan Africa. We demonstrate that obsolete Bitcoin mining Application-Specific Integrated Circuits (ASICs) can be repurposed to create a secure, low-cost, and energy-efficient medical records system. The proposed architecture employs a four-tier hierarchical network: regional hospitals using Antminer S19 Pro (90+ TH/s), urban health centers with Antminer S9 (14 TH/s), rural clinics equipped with Lucky Miner LV06 (500 GH/s, 13W), and mobile health points with portable ASIC devices. We introduce the Deterministic Hardware Fingerprinting (DHF) paradigm, which repurposes SHA-256 mining ASICs as cryptographic proof generators, achieving 100% verification rate across 23 test proofs during 300-second validation sessions. The system incorporates Reed-Solomon LSB watermarking for medical image authentication with 30-40% damage tolerance, semantic Retrieval-Augmented Generation (RAG) for intelligent medical record queries, and offline synchronization protocols for intermittent connectivity. Economic analysis demonstrates 96% cost reduction compared to GPU-based alternatives, with total deployment cost of $847 per rural clinic including 5-year solar power infrastructure. Validation experiments on Lucky Miner LV06 (BM1366 chip, 5nm) achieve 2.93 MH/W efficiency and confirm hardware universality. This work establishes a practical framework for deploying verifiable, tamper-proof electronic health records in regions where traditional healthcare IT infrastructure is economically unfeasible, potentially benefiting over 600 million people lacking access to basic health information systems.

分类

作者