AI 연구 논문
arXiv에서 최신 연구 발견
최신 논문
Revisiting Generalization Across Difficulty Levels: It's Not So Easy
We investigate how well large language models (LLMs) generalize across different task difficulties, a key question for effective data curation and evaluation. Existing research is mixed regarding whether training on easier or harder data leads to better results, and whether those gains come on easier or harder test data. We address this question by conducting a systematic evaluation of LLMs' generalization across models, datasets, and fine-grained groups of example difficulty. We rank examples in six datasets using the outputs of thousands of different LLMs and Item Response Theory (IRT), a well-established difficulty metric in educational testing. Unlike prior work, our difficulty ratings are therefore determined solely by the abilities of many different LLMs, excluding human opinions of difficulty. With a more objective, larger-scale, and finer-grained analysis, we show that cross-difficulty generalization is often limited; training on either easy or hard data cannot achieve consistent improvements across the full range of difficulties. These results show the importance of having a range of difficulties in both training and evaluation data for LLMs, and that taking shortcuts with respect to difficulty is risky.
Canvas-to-Image: Compositional Image Generation with Multimodal Controls
While modern diffusion models excel at generating high-quality and diverse images, they still struggle with high-fidelity compositional and multimodal control, particularly when users simultaneously specify text prompts, subject references, spatial arrangements, pose constraints, and layout annotations. We introduce Canvas-to-Image, a unified framework that consolidates these heterogeneous controls into a single canvas interface, enabling users to generate images that faithfully reflect their intent. Our key idea is to encode diverse control signals into a single composite canvas image that the model can directly interpret for integrated visual-spatial reasoning. We further curate a suite of multi-task datasets and propose a Multi-Task Canvas Training strategy that optimizes the diffusion model to jointly understand and integrate heterogeneous controls into text-to-image generation within a unified learning paradigm. This joint training enables Canvas-to-Image to reason across multiple control modalities rather than relying on task-specific heuristics, and it generalizes well to multi-control scenarios during inference. Extensive experiments show that Canvas-to-Image significantly outperforms state-of-the-art methods in identity preservation and control adherence across challenging benchmarks, including multi-person composition, pose-controlled composition, layout-constrained generation, and multi-control generation.
TraceGen: World Modeling in 3D Trace Space Enables Learning from Cross-Embodiment Videos
Learning new robot tasks on new platforms and in new scenes from only a handful of demonstrations remains challenging. While videos of other embodiments - humans and different robots - are abundant, differences in embodiment, camera, and environment hinder their direct use. We address the small-data problem by introducing a unifying, symbolic representation - a compact 3D "trace-space" of scene-level trajectories - that enables learning from cross-embodiment, cross-environment, and cross-task videos. We present TraceGen, a world model that predicts future motion in trace-space rather than pixel space, abstracting away appearance while retaining the geometric structure needed for manipulation. To train TraceGen at scale, we develop TraceForge, a data pipeline that transforms heterogeneous human and robot videos into consistent 3D traces, yielding a corpus of 123K videos and 1.8M observation-trace-language triplets. Pretraining on this corpus produces a transferable 3D motion prior that adapts efficiently: with just five target robot videos, TraceGen attains 80% success across four tasks while offering 50-600x faster inference than state-of-the-art video-based world models. In the more challenging case where only five uncalibrated human demonstration videos captured on a handheld phone are available, it still reaches 67.5% success on a real robot, highlighting TraceGen's ability to adapt across embodiments without relying on object detectors or heavy pixel-space generation.
ToolOrchestra: Elevating Intelligence via Efficient Model and Tool Orchestration
Large language models are powerful generalists, yet solving deep and complex problems such as those of the Humanity's Last Exam (HLE) remains both conceptually challenging and computationally expensive. We show that small orchestrators managing other models and a variety of tools can both push the upper bound of intelligence and improve efficiency in solving difficult agentic tasks. We introduce ToolOrchestra, a method for training small orchestrators that coordinate intelligent tools. ToolOrchestra explicitly uses reinforcement learning with outcome-, efficiency-, and user-preference-aware rewards. Using ToolOrchestra, we produce Orchestrator, an 8B model that achieves higher accuracy at lower cost than previous tool-use agents while aligning with user preferences on which tools are to be used for a given query. On HLE, Orchestrator achieves a score of 37.1%, outperforming GPT-5 (35.1%) while being 2.5x more efficient. On tau2-Bench and FRAMES, Orchestrator surpasses GPT-5 by a wide margin while using only about 30% of the cost. Extensive analysis shows that Orchestrator achieves the best trade-off between performance and cost under multiple metrics, and generalizes robustly to unseen tools. These results demonstrate that composing diverse tools with a lightweight orchestration model is both more efficient and more effective than existing methods, paving the way for practical and scalable tool-augmented reasoning systems.
G$^2$VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning
Vision-Language Models (VLMs) still lack robustness in spatial intelligence, demonstrating poor performance on spatial understanding and reasoning tasks. We attribute this gap to the absence of a visual geometry learning process capable of reconstructing 3D space from 2D images. We present G$^2$VLM, a geometry grounded vision-language model that bridges two fundamental aspects of spatial intelligence: spatial 3D reconstruction and spatial understanding. G$^2$VLM natively leverages learned 3D visual geometry features to directly predict 3D attributes and enhance spatial reasoning tasks via in-context learning and interleaved reasoning. Our unified design is highly scalable for spatial understanding: it trains on abundant multi-view image and video data, while simultaneously leveraging the benefits of 3D visual priors that are typically only derived from hard-to-collect annotations. Experimental results demonstrate G$^2$VLM is proficient in both tasks, achieving comparable results to state-of-the-art feed-forward 3D reconstruction models and achieving better or competitive results across spatial understanding and reasoning tasks. By unifying a semantically strong VLM with low-level 3D vision tasks, we hope G$^2$VLM can serve as a strong baseline for the community and unlock more future applications, such as 3D scene editing.
Matrix: Peer-to-Peer Multi-Agent Synthetic Data Generation Framework
Synthetic data has become increasingly important for training large language models, especially when real data is scarce, expensive, or privacy-sensitive. Many such generation tasks require coordinated multi-agent workflows, where specialized agents collaborate to produce data that is higher quality, more diverse, and structurally richer. However, existing frameworks for multi-agent synthesis often depend on a centralized orchestrator, creating scalability bottlenecks, or are hardcoded for specific domains, limiting flexibility. We present \textbf{Matrix}, a decentralized framework that represents both control and data flow as serialized messages passed through distributed queues. This peer-to-peer design eliminates the central orchestrator. Each task progresses independently through lightweight agents, while compute-intensive operations, such as LLM inference or containerized environments, are handled by distributed services. Built on Ray, Matrix scales to tens of thousands of concurrent agentic workflows and provides a modular, configurable design that enables easy adaptation to a wide range of data generation workflows. We evaluate Matrix across diverse synthesis scenarios, such as multi-agent collaborative dialogue, web-based reasoning data extraction, and tool-use trajectory generation in customer service environments. In all cases, Matrix achieves $2$--$15\times$ higher data generation throughput under identical hardware resources, without compromising output quality.
Seeing without Pixels: Perception from Camera Trajectories
Can one perceive a video's content without seeing its pixels, just from the camera trajectory-the path it carves through space? This paper is the first to systematically investigate this seemingly implausible question. Towards this end, we propose a contrastive learning framework to train CamFormer, a dedicated encoder that projects camera pose trajectories into a joint embedding space, aligning them with natural language. We find that, contrary to its apparent simplicity, the camera trajectory is a remarkably informative signal to uncover video content. In other words, "how you move" can indeed reveal "what you are doing" (egocentric) or "observing" (exocentric). We demonstrate the versatility of our learned CamFormer embeddings on a diverse suite of downstream tasks, ranging from cross-modal alignment to classification and temporal analysis. Importantly, our representations are robust across diverse camera pose estimation methods, including both high-fidelity multi-sensored and standard RGB-only estimators. Our findings establish camera trajectory as a lightweight, robust, and versatile modality for perceiving video content.
Agentic Learner with Grow-and-Refine Multimodal Semantic Memory
MLLMs exhibit strong reasoning on isolated queries, yet they operate de novo -- solving each problem independently and often repeating the same mistakes. Existing memory-augmented agents mainly store past trajectories for reuse. However, trajectory-based memory suffers from brevity bias, gradually losing essential domain knowledge. More critically, even in truly multimodal problem-solving settings, it records only a single-modality trace of past behavior, failing to preserve how visual attention and logical reasoning jointly contributed to the solution. This is fundamentally misaligned with human cognition: semantic memory is both multimodal and integrated, preserving visual and abstract knowledge through coordinated but distinct representational streams. We thus introduce ViLoMem, a dual-stream memory framework that constructs compact, schema-based memory. It separately encodes visual distraction patterns and logical reasoning errors, enabling MLLMs to learn from their successful and failed experiences. Following a grow-and-refine principle, the system incrementally accumulates and updates multimodal semantic knowledge -- preserving stable, generalizable strategies while avoiding catastrophic forgetting. Across six multimodal benchmarks, ViLoMem consistently improves pass@1 accuracy and substantially reduces repeated visual and logical errors. Ablations confirm the necessity of dual-stream memory with explicit distraction--hallucination separation, demonstrating the value of error-aware multimodal memory for lifelong and cross-domain agentic learning. Our project page will be available at https://weihao-bo.github.io/ViLoMeo-page.
On Evolution-Based Models for Experimentation Under Interference
Causal effect estimation in networked systems is central to data-driven decision making. In such settings, interventions on one unit can spill over to others, and in complex physical or social systems, the interaction pathways driving these interference structures remain largely unobserved. We argue that for identifying population-level causal effects, it is not necessary to recover the exact network structure; instead, it suffices to characterize how those interactions contribute to the evolution of outcomes. Building on this principle, we study an evolution-based approach that investigates how outcomes change across observation rounds in response to interventions, hence compensating for missing network information. Using an exposure-mapping perspective, we give an axiomatic characterization of when the empirical distribution of outcomes follows a low-dimensional recursive equation, and identify minimal structural conditions under which such evolution mappings exist. We frame this as a distributional counterpart to difference-in-differences. Rather than assuming parallel paths for individual units, it exploits parallel evolution patterns across treatment scenarios to estimate counterfactual trajectories. A key insight is that treatment randomization plays a role beyond eliminating latent confounding; it induces an implicit sampling from hidden interference channels, enabling consistent learning about heterogeneous spillover effects. We highlight causal message passing as an instantiation of this method in dense networks while extending to more general interference structures, including influencer networks where a small set of units drives most spillovers. Finally, we discuss the limits of this approach, showing that strong temporal trends or endogenous interference can undermine identification.
Event-driven eligibility propagation in large sparse networks: efficiency shaped by biological realism
Despite remarkable technological advances, AI systems may still benefit from biological principles, such as recurrent connectivity and energy-efficient mechanisms. Drawing inspiration from the brain, we present a biologically plausible extension of the eligibility propagation (e-prop) learning rule for recurrent spiking networks. By translating the time-driven update scheme into an event-driven one, we integrate the learning rule into a simulation platform for large-scale spiking neural networks and demonstrate its applicability to tasks such as neuromorphic MNIST. We extend the model with prominent biological features such as continuous dynamics and weight updates, strict locality, and sparse connectivity. Our results show that biologically grounded constraints can inform the design of computationally efficient AI algorithms, offering scalability to millions of neurons without compromising learning performance. This work bridges machine learning and computational neuroscience, paving the way for sustainable, biologically inspired AI systems while advancing our understanding of brain-like learning.
Revolutionizing Glioma Segmentation & Grading Using 3D MRI - Guided Hybrid Deep Learning Models
Gliomas are brain tumor types that have a high mortality rate which means early and accurate diagnosis is important for therapeutic intervention for the tumors. To address this difficulty, the proposed research will develop a hybrid deep learning model which integrates U-Net based segmentation and a hybrid DenseNet-VGG classification network with multihead attention and spatial-channel attention capabilities. The segmentation model will precisely demarcate the tumors in a 3D volume of MRI data guided by spatial and contextual information. The classification network which combines a branch of both DenseNet and VGG, will incorporate the demarcated tumor on which features with attention mechanisms would be focused on clinically relevant features. High-dimensional 3D MRI data could successfully be utilized in the model through preprocessing steps which are normalization, resampling, and data augmentation. Through a variety of measures the framework is evaluated: measures of performance in segmentation are Dice coefficient and Mean Intersection over Union (IoU) and measures of performance in classification are accuracy precision, recall, and F1-score. The hybrid framework that has been proposed has demonstrated through physical testing that it has the capability of obtaining a Dice coefficient of 98% in tumor segmentation, and 99% on classification accuracy, outperforming traditional CNN models and attention-free methods. Utilizing multi-head attention mechanisms enhances notions of priority in aspects of the tumor that are clinically significant, and enhances interpretability and accuracy. The results suggest a great potential of the framework in facilitating the timely and reliable diagnosis and grading of glioma by clinicians is promising, allowing for better planning of patient treatment.
DSD: A Distributed Speculative Decoding Solution for Edge-Cloud Agile Large Model Serving
Large language model (LLM) inference often suffers from high decoding latency and limited scalability across heterogeneous edge-cloud environments. Existing speculative decoding (SD) techniques accelerate token generation but remain confined to single-node execution. We propose DSD, a distributed speculative decoding framework that extends SD to multi-device deployments through coordinated draft-target execution. Given the lack of prior work on simulating this paradigm, we first introduce DSD-Sim, a discrete-event simulator that captures network, batching, and scheduling dynamics. Building on insights from DSD-Sim, we further design an Adaptive Window Control (AWC) policy that dynamically adjusts speculation window size to optimize throughput. Experiments across diverse workloads show that DSD achieves up to 1.1x speedup and 9.7% higher throughput over existing SD baselines, enabling agile and scalable LLM serving across edge and cloud.
Through the telecom lens: Are all training samples important?
The rise of AI in telecommunications, from optimizing Radio Access Networks to managing user experience, has sharply increased data volumes and training demands. Telecom data is often noisy, high-dimensional, costly to store, process, and label. Despite Ai's critical role, standard workflows still assume all training samples contribute equally. On the other hand, next generation systems require AI models that are accurate, efficient, and sustainable.The paper questions the assumptions of equal importance by focusing on applying and analyzing the roles of individual samples in telecom training and assessing whether the proposed model optimizes computation and energy use. we perform sample-level gradient analysis across epochs to identify patterns of influence and redundancy in model learning. Based on this, we propose a sample importance framework thats electively prioritizes impactful data and reduces computation without compromising accuracy. Experiments on three real-world telecom datasets show that our method [reserves performance while reducing data needs and computational overhead while advancing the goals of sustainable AI in telecommunications.
Escaping the Verifier: Learning to Reason via Demonstrations
Training Large Language Models (LLMs) to reason often relies on Reinforcement Learning (RL) with task-specific verifiers. However, many real-world reasoning-intensive tasks lack verifiers, despite offering abundant expert demonstrations that remain under-utilized for reasoning-focused training. We introduce RARO (Relativistic Adversarial Reasoning Optimization) that learns strong reasoning capabilities from only expert demonstrations via Inverse Reinforcement Learning. Our method sets up an adversarial interaction between a policy (generator) and a relativistic critic (discriminator): the policy learns to mimic expert answers, while the critic learns to compare and distinguish between policy and expert answers. Our method trains both the policy and the critic jointly and continuously via RL, and we identify the key stabilization techniques required for robust learning. Empirically, RARO significantly outperforms strong verifier-free baselines on all of our evaluation tasks -- Countdown, DeepMath, and Poetry Writing -- and enjoys the same robust scaling trends as RL on verifiable tasks. These results demonstrate that our method effectively elicits strong reasoning performance from expert demonstrations alone, enabling robust reasoning learning even when task-specific verifiers are unavailable.
Uncertainty Quantification for Visual Object Pose Estimation
Quantifying the uncertainty of an object's pose estimate is essential for robust control and planning. Although pose estimation is a well-studied robotics problem, attaching statistically rigorous uncertainty is not well understood without strict distributional assumptions. We develop distribution-free pose uncertainty bounds about a given pose estimate in the monocular setting. Our pose uncertainty only requires high probability noise bounds on pixel detections of 2D semantic keypoints on a known object. This noise model induces an implicit, non-convex set of pose uncertainty constraints. Our key contribution is SLUE (S-Lemma Uncertainty Estimation), a convex program to reduce this set to a single ellipsoidal uncertainty bound that is guaranteed to contain the true object pose with high probability. SLUE solves a relaxation of the minimum volume bounding ellipsoid problem inspired by the celebrated S-lemma. It requires no initial guess of the bound's shape or size and is guaranteed to contain the true object pose with high probability. For tighter uncertainty bounds at the same confidence, we extend SLUE to a sum-of-squares relaxation hierarchy which is guaranteed to converge to the minimum volume ellipsoidal uncertainty bound for a given set of keypoint constraints. We show this pose uncertainty bound can easily be projected to independent translation and axis-angle orientation bounds. We evaluate SLUE on two pose estimation datasets and a real-world drone tracking scenario. Compared to prior work, SLUE generates substantially smaller translation bounds and competitive orientation bounds. We release code at https://github.com/MIT-SPARK/PoseUncertaintySets.
Attention-Guided Patch-Wise Sparse Adversarial Attacks on Vision-Language-Action Models
In recent years, Vision-Language-Action (VLA) models in embodied intelligence have developed rapidly. However, existing adversarial attack methods require costly end-to-end training and often generate noticeable perturbation patches. To address these limitations, we propose ADVLA, a framework that directly applies adversarial perturbations on features projected from the visual encoder into the textual feature space. ADVLA efficiently disrupts downstream action predictions under low-amplitude constraints, and attention guidance allows the perturbations to be both focused and sparse. We introduce three strategies that enhance sensitivity, enforce sparsity, and concentrate perturbations. Experiments demonstrate that under an $L_{\infty}=4/255$ constraint, ADVLA combined with Top-K masking modifies less than 10% of the patches while achieving an attack success rate of nearly 100%. The perturbations are concentrated on critical regions, remain almost imperceptible in the overall image, and a single-step iteration takes only about 0.06 seconds, significantly outperforming conventional patch-based attacks. In summary, ADVLA effectively weakens downstream action predictions of VLA models under low-amplitude and locally sparse conditions, avoiding the high training costs and conspicuous perturbations of traditional patch attacks, and demonstrates unique effectiveness and practical value for attacking VLA feature spaces.
Multi-Crit: Benchmarking Multimodal Judges on Pluralistic Criteria-Following
Large multimodal models (LMMs) are increasingly adopted as judges in multimodal evaluation systems due to their strong instruction following and consistency with human preferences. However, their ability to follow diverse, fine-grained evaluation criteria remains underexplored. We develop Multi-Crit, a benchmark for evaluating multimodal judges on their capacity to follow pluralistic criteria and produce reliable criterion-level judgments. Covering both open-ended generation and verifiable reasoning tasks, Multi-Crit is built through a rigorous data curation pipeline that gathers challenging response pairs with multi-criterion human annotations. It further introduces three novel metrics for systematically assessing pluralistic adherence, criterion-switching flexibility, and the ability to recognize criterion-level preference conflicts. Comprehensive analysis of 25 LMMs reveals that 1) proprietary models still struggle to maintain consistent adherence to pluralistic criteria--especially in open-ended evaluation; 2) open-source models lag further behind in flexibly following diverse criteria; and 3) critic fine-tuning with holistic judgment signals enhances visual grounding but fails to generalize to pluralistic criterion-level judgment. Additional analyses on reasoning fine-tuning, test-time scaling, and boundary consistency between open-source and proprietary models further probe the limits of current multimodal judges. As a pioneering study, Multi-Crit lays the foundation for building reliable and steerable multimodal AI evaluation.
EvilGenie: A Reward Hacking Benchmark
We introduce EvilGenie, a benchmark for reward hacking in programming settings. We source problems from LiveCodeBench and create an environment in which agents can easily reward hack, such as by hardcoding test cases or editing the testing files. We measure reward hacking in three ways: held out unit tests, LLM judges, and test file edit detection. We verify these methods against human review and each other. We find the LLM judge to be highly effective at detecting reward hacking in unambiguous cases, and observe only minimal improvement from the use of held out test cases. In addition to testing many models using Inspect's basic_agent scaffold, we also measure reward hacking rates for three popular proprietary coding agents: OpenAI's Codex, Anthropic's Claude Code, and Google's Gemini CLI Using GPT-5, Claude Sonnet 4, and Gemini 2.5 Pro, respectively. We observe explicit reward hacking by both Codex and Claude Code, and misaligned behavior by all three agents. Our codebase can be found at https://github.com/JonathanGabor/EvilGenie.
CaFlow: Enhancing Long-Term Action Quality Assessment with Causal Counterfactual Flow
Action Quality Assessment (AQA) predicts fine-grained execution scores from action videos and is widely applied in sports, rehabilitation, and skill evaluation. Long-term AQA, as in figure skating or rhythmic gymnastics, is especially challenging since it requires modeling extended temporal dynamics while remaining robust to contextual confounders. Existing approaches either depend on costly annotations or rely on unidirectional temporal modeling, making them vulnerable to spurious correlations and unstable long-term representations. To this end, we propose CaFlow, a unified framework that integrates counterfactual de-confounding with bidirectional time-conditioned flow. The Causal Counterfactual Regularization (CCR) module disentangles causal and confounding features in a self-supervised manner and enforces causal robustness through counterfactual interventions, while the BiT-Flow module models forward and backward dynamics with a cycle-consistency constraint to produce smoother and more coherent representations. Extensive experiments on multiple long-term AQA benchmarks demonstrate that CaFlow achieves state-of-the-art performance. Code is available at https://github.com/Harrison21/CaFlow
Continual Error Correction on Low-Resource Devices
The proliferation of AI models in everyday devices has highlighted a critical challenge: prediction errors that degrade user experience. While existing solutions focus on error detection, they rarely provide efficient correction mechanisms, especially for resource-constrained devices. We present a novel system enabling users to correct AI misclassifications through few-shot learning, requiring minimal computational resources and storage. Our approach combines server-side foundation model training with on-device prototype-based classification, enabling efficient error correction through prototype updates rather than model retraining. The system consists of two key components: (1) a server-side pipeline that leverages knowledge distillation to transfer robust feature representations from foundation models to device-compatible architectures, and (2) a device-side mechanism that enables ultra-efficient error correction through prototype adaptation. We demonstrate our system's effectiveness on both image classification and object detection tasks, achieving over 50% error correction in one-shot scenarios on Food-101 and Flowers-102 datasets while maintaining minimal forgetting (less than 0.02%) and negligible computational overhead. Our implementation, validated through an Android demonstration app, proves the system's practicality in real-world scenarios.
Aligning LLMs Toward Multi-Turn Conversational Outcomes Using Iterative PPO
Optimizing large language models (LLMs) for multi-turn conversational outcomes remains a significant challenge, especially in goal-oriented settings like AI marketing or sales agents who facilitate transactions via messaging platforms. The difficulty stems from sparse, long-horizon rewards and the discrepancy between response-level planning and token-level generation. In this technical note, we propose a formal reduction of the multi-turn RL problem into a sequence of single-turn RLHF-style problems. This is achieved by setting a learned multi-turn Q-function as the reward model for the single-turn problem. We demonstrate and prove a key insight: solving this single-turn RL problem with standard token-level PPO is equivalent to a policy improvement step within the multi-turn problem. This insight naturally leads to Iterative PPO, a batch online policy iteration algorithm that alternates between fitting Q-functions from logged conversation trajectories and improving the policy. A major practical advantage is that Iterative PPO directly leverages stable, off-the-shelf single-turn RLHF tools, making it straightforward to implement. Our method occupies a middle ground between fully online and fully offline approaches, retaining the adaptability of online updates while gaining the stability benefits of offline training.
Bridging the Unavoidable A Priori: A Framework for Comparative Causal Modeling
AI/ML models have rapidly gained prominence as innovations for solving previously unsolved problems and their unintended consequences from amplifying human biases. Advocates for responsible AI/ML have sought ways to draw on the richer causal models of system dynamics to better inform the development of responsible AI/ML. However, a major barrier to advancing this work is the difficulty of bringing together methods rooted in different underlying assumptions (i.e., Dana Meadow's "the unavoidable a priori"). This paper brings system dynamics and structural equation modeling together into a common mathematical framework that can be used to generate systems from distributions, develop methods, and compare results to inform the underlying epistemology of system dynamics for data science and AI/ML applications.
Mechanisms of Non-Monotonic Scaling in Vision Transformers
Deeper Vision Transformers often perform worse than shallower ones, which challenges common scaling assumptions. Through a systematic empirical analysis of ViT-S, ViT-B, and ViT-L on ImageNet, we identify a consistent three-phase Cliff-Plateau-Climb pattern that governs how representations evolve with depth. We observe that better performance is associated with progressive marginalization of the [CLS] token, originally designed as a global aggregation hub, in favor of distributed consensus among patch tokens. We quantify patterns of information mixing with an Information Scrambling Index, and show that in ViT-L the information-task tradeoff emerges roughly 10 layers later than in ViT-B, and that these additional layers correlate with increased information diffusion rather than improved task performance. Taken together, these results suggest that transformer architectures in this regime may benefit more from carefully calibrated depth that executes clean phase transitions than from simply increasing parameter count. The Information Scrambling Index provides a useful diagnostic for existing models and suggests a potential design target for future architectures. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/Cliff-Plateau-Climb.
Qwen3-VL Technical Report
We introduce Qwen3-VL, the most capable vision-language model in the Qwen series to date, achieving superior performance across a broad range of multimodal benchmarks. It natively supports interleaved contexts of up to 256K tokens, seamlessly integrating text, images, and video. The model family includes both dense (2B/4B/8B/32B) and mixture-of-experts (30B-A3B/235B-A22B) variants to accommodate diverse latency-quality trade-offs. Qwen3-VL delivers three core pillars: (i) markedly stronger pure-text understanding, surpassing comparable text-only backbones in several cases; (ii) robust long-context comprehension with a native 256K-token window for both text and interleaved multimodal inputs, enabling faithful retention, retrieval, and cross-referencing across long documents and videos; and (iii) advanced multimodal reasoning across single-image, multi-image, and video tasks, demonstrating leading performance on comprehensive evaluations such as MMMU and visual-math benchmarks (e.g., MathVista and MathVision). Architecturally, we introduce three key upgrades: (i) an enhanced interleaved-MRoPE for stronger spatial-temporal modeling across images and video; (ii) DeepStack integration, which effectively leverages multi-level ViT features to tighten vision-language alignment; and (iii) text-based time alignment for video, evolving from T-RoPE to explicit textual timestamp alignment for more precise temporal grounding. Under comparable token budgets and latency constraints, Qwen3-VL achieves superior performance in both dense and Mixture-of-Experts (MoE) architectures. We envision Qwen3-VL serving as a foundational engine for image-grounded reasoning, agentic decision-making, and multimodal code intelligence in real-world workflows.
The author is dead, but what if they never lived? A reception experiment on Czech AI- and human-authored poetry
Large language models are increasingly capable of producing creative texts, yet most studies on AI-generated poetry focus on English -- a language that dominates training data. In this paper, we examine the perception of AI- and human-written Czech poetry. We ask if Czech native speakers are able to identify it and how they aesthetically judge it. Participants performed at chance level when guessing authorship (45.8\% correct on average), indicating that Czech AI-generated poems were largely indistinguishable from human-written ones. Aesthetic evaluations revealed a strong authorship bias: when participants believed a poem was AI-generated, they rated it as less favorably, even though AI poems were in fact rated equally or more favorably than human ones on average. The logistic regression model uncovered that the more the people liked a poem, the less probable was that they accurately assign the authorship. Familiarity with poetry or literary background had no effect on recognition accuracy. Our findings show that AI can convincingly produce poetry even in a morphologically complex, low-resource (with respect of the training data of AI models) Slavic language such as Czech. The results suggest that readers' beliefs about authorship and the aesthetic evaluation of the poem are interconnected.
Scale-Agnostic Kolmogorov-Arnold Geometry in Neural Networks
Recent work by Freedman and Mulligan demonstrated that shallow multilayer perceptrons spontaneously develop Kolmogorov-Arnold geometric (KAG) structure during training on synthetic three-dimensional tasks. However, it remained unclear whether this phenomenon persists in realistic high-dimensional settings and what spatial properties this geometry exhibits. We extend KAG analysis to MNIST digit classification (784 dimensions) using 2-layer MLPs with systematic spatial analysis at multiple scales. We find that KAG emerges during training and appears consistently across spatial scales, from local 7-pixel neighborhoods to the full 28x28 image. This scale-agnostic property holds across different training procedures: both standard training and training with spatial augmentation produce the same qualitative pattern. These findings reveal that neural networks spontaneously develop organized, scale-invariant geometric structure during learning on realistic high-dimensional data.
Active Learning for GCN-based Action Recognition
Despite the notable success of graph convolutional networks (GCNs) in skeleton-based action recognition, their performance often depends on large volumes of labeled data, which are frequently scarce in practical settings. To address this limitation, we propose a novel label-efficient GCN model. Our work makes two primary contributions. First, we develop a novel acquisition function that employs an adversarial strategy to identify a compact set of informative exemplars for labeling. This selection process balances representativeness, diversity, and uncertainty. Second, we introduce bidirectional and stable GCN architectures. These enhanced networks facilitate a more effective mapping between the ambient and latent data spaces, enabling a better understanding of the learned exemplar distribution. Extensive evaluations on two challenging skeleton-based action recognition benchmarks reveal significant improvements achieved by our label-efficient GCNs compared to prior work.
TAGFN: A Text-Attributed Graph Dataset for Fake News Detection in the Age of LLMs
Large Language Models (LLMs) have recently revolutionized machine learning on text-attributed graphs, but the application of LLMs to graph outlier detection, particularly in the context of fake news detection, remains significantly underexplored. One of the key challenges is the scarcity of large-scale, realistic, and well-annotated datasets that can serve as reliable benchmarks for outlier detection. To bridge this gap, we introduce TAGFN, a large-scale, real-world text-attributed graph dataset for outlier detection, specifically fake news detection. TAGFN enables rigorous evaluation of both traditional and LLM-based graph outlier detection methods. Furthermore, it facilitates the development of misinformation detection capabilities in LLMs through fine-tuning. We anticipate that TAGFN will be a valuable resource for the community, fostering progress in robust graph-based outlier detection and trustworthy AI. The dataset is publicly available at https://huggingface.co/datasets/kayzliu/TAGFN and our code is available at https://github.com/kayzliu/tagfn.
On the Origin of Algorithmic Progress in AI
Algorithms have been estimated to increase AI training FLOP efficiency by a factor of 22,000 between 2012 and 2023 [Ho et al., 2024]. Running small-scale ablation experiments on key innovations from this time period, we are able to account for less than 10x of these gains. Surveying the broader literature, we estimate that additional innovations not included in our ablations account for less than 10x, yielding a total under 100x. This leads us to conduct scaling experiments, which reveal that much of this efficiency gap can be explained by algorithms with scale-dependent efficiency improvements. In particular, we conduct scaling experiments between LSTMs and Transformers, finding exponent differences in their compute-optimal scaling law while finding little scaling difference for many other innovations. These experiments demonstrate that - contrary to standard assumptions - an algorithm's efficiency gains are tied to compute scale. Using experimental extrapolation and literature estimates, we account for 6,930x efficiency gains over the same time period, with the scale-dependent LSTM-to-Transformer transition accounting for the majority of gains. Our results indicate that algorithmic progress for small models has been far slower than previously assumed, and that measures of algorithmic efficiency are strongly reference-dependent.
Beyond URLs: Metadata Diversity and Position for Efficient LLM Pretraining
Incorporating metadata in Large Language Models (LLMs) pretraining has recently emerged as a promising approach to accelerate training. However prior work highlighted only one useful signal-URLs, leaving open the question of whether other forms of metadata could yield greater benefits. In this study, we investigate a wider range of metadata types and find other types of metadata, such as fine-grained indicators of document quality that can also accelerate pretraining when prepended. We identify a common feature among effective metadata: they encode information at a finer granularity. We further introduce metadata appending as a means of improving training efficiency, where predicting an appropriate metadata as auxiliary task can help speed up pretraining. In addition, learnable meta-tokens trained with masked loss can recover part of the speedup by inducing quality-aware latent structure. Using probing, we analyze latent representations to understand how metadata shapes learning. Together, these results yield practical guidelines for integrating metadata to improve both the efficiency and effectiveness of LLM pretraining.
Auxiliary Metrics Help Decoding Skill Neurons in the Wild
Large language models (LLMs) exhibit remarkable capabilities across a wide range of tasks, yet their internal mechanisms remain largely opaque. In this paper, we introduce a simple, lightweight, and broadly applicable method with a focus on isolating neurons that encode specific skills. Building upon prior work that identified "skill neurons" via soft prompt training on classification tasks, our approach extends the analysis to complex scenarios involving multiple skills. We correlate neuron activations with auxiliary metrics -- such as external labels and the model's own confidence score -- thereby uncovering interpretable and task-specific behaviors without the need for manual token aggregation. We empirically validate our method on tasks spanning open-ended text generation and natural language inference, demonstrating its ability to detect neurons that not only drive known skills but also reveal previously unidentified shortcuts in arithmetic reasoning on BigBench.
Beyond Accuracy: An Empirical Study of Uncertainty Estimation in Imputation
Handling missing data is a central challenge in data-driven analysis. Modern imputation methods not only aim for accurate reconstruction but also differ in how they represent and quantify uncertainty. Yet, the reliability and calibration of these uncertainty estimates remain poorly understood. This paper presents a systematic empirical study of uncertainty in imputation, comparing representative methods from three major families: statistical (MICE, SoftImpute), distribution alignment (OT-Impute), and deep generative (GAIN, MIWAE, TabCSDI). Experiments span multiple datasets, missingness mechanisms (MCAR, MAR, MNAR), and missingness rates. Uncertainty is estimated through three complementary routes: multi-run variability, conditional sampling, and predictive-distribution modeling, and evaluated using calibration curves and the Expected Calibration Error (ECE). Results show that accuracy and calibration are often misaligned: models with high reconstruction accuracy do not necessarily yield reliable uncertainty. We analyze method-specific trade-offs among accuracy, calibration, and runtime, identify stable configurations, and offer guidelines for selecting uncertainty-aware imputers in data cleaning and downstream machine learning pipelines.
ReSAM: Refine, Requery, and Reinforce: Self-Prompting Point-Supervised Segmentation for Remote Sensing Images
Interactive segmentation models such as the Segment Anything Model (SAM) have demonstrated remarkable generalization on natural images, but perform suboptimally on remote sensing imagery (RSI) due to severe domain shift and the scarcity of dense annotations. To address this, we propose a self-prompting, point-supervised framework that adapts SAM to RSIs using only sparse point annotations. Our method employs a Refine-Requery-Reinforce loop, where coarse pseudo-masks are generated from initial points (Refine), improved with self-constructed box prompts (Requery), and embeddings are aligned across iterations to reduce confirmation bias (Reinforce). Without relying on full-mask supervision, our approach progressively enhances SAM's segmentation quality and domain robustness through self-guided prompt adaptation . We evaluate our proposed method on three RSI benchmark datasets, including WHU, HRSID, and NWPU VHR-10, showing that our method consistently surpasses pretrained SAM and recent point-supervised segmentation methods. Our results demonstrate that self-prompting and semantic alignment provide an efficient path towards scalable, point-level adaptation of foundation segmentation models for remote sensing applications.
TAB-DRW: A DFT-based Robust Watermark for Generative Tabular Data
The rise of generative AI has enabled the production of high-fidelity synthetic tabular data across fields such as healthcare, finance, and public policy, raising growing concerns about data provenance and misuse. Watermarking offers a promising solution to address these concerns by ensuring the traceability of synthetic data, but existing methods face many limitations: they are computationally expensive due to reliance on large diffusion models, struggle with mixed discrete-continuous data, or lack robustness to post-modifications. To address them, we propose TAB-DRW, an efficient and robust post-editing watermarking scheme for generative tabular data. TAB-DRW embeds watermark signals in the frequency domain: it normalizes heterogeneous features via the Yeo-Johnson transformation and standardization, applies the discrete Fourier transform (DFT), and adjusts the imaginary parts of adaptively selected entries according to precomputed pseudorandom bits. To further enhance robustness and efficiency, we introduce a novel rank-based pseudorandom bit generation method that enables row-wise retrieval without incurring storage overhead. Experiments on five benchmark tabular datasets show that TAB-DRW achieves strong detectability and robustness against common post-processing attacks, while preserving high data fidelity and fully supporting mixed-type features.
Visualizing LLM Latent Space Geometry Through Dimensionality Reduction
Large language models (LLMs) achieve state-of-the-art results across many natural language tasks, but their internal mechanisms remain difficult to interpret. In this work, we extract, process, and visualize latent state geometries in Transformer-based language models through dimensionality reduction. We capture layerwise activations at multiple points within Transformer blocks and enable systematic analysis through Principal Component Analysis (PCA) and Uniform Manifold Approximation (UMAP). We demonstrate experiments on GPT-2 and LLaMa models, where we uncover interesting geometric patterns in latent space. Notably, we identify a clear separation between attention and MLP component outputs across intermediate layers, a pattern not documented in prior work to our knowledge. We also characterize the high norm of latent states at the initial sequence position and visualize the layerwise evolution of latent states. Additionally, we demonstrate the high-dimensional helical structure of GPT-2's positional embeddings, the sequence-wise geometric patterns in LLaMa, and experiment with repeating token sequences. We aim to support systematic analysis of Transformer internals with the goal of enabling further reproducible interpretability research. We make our code available at https://github.com/Vainateya/Feature_Geometry_Visualization.
MoGAN: Improving Motion Quality in Video Diffusion via Few-Step Motion Adversarial Post-Training
Video diffusion models achieve strong frame-level fidelity but still struggle with motion coherence, dynamics and realism, often producing jitter, ghosting, or implausible dynamics. A key limitation is that the standard denoising MSE objective provides no direct supervision on temporal consistency, allowing models to achieve low loss while still generating poor motion. We propose MoGAN, a motion-centric post-training framework that improves motion realism without reward models or human preference data. Built atop a 3-step distilled video diffusion model, we train a DiT-based optical-flow discriminator to differentiate real from generated motion, combined with a distribution-matching regularizer to preserve visual fidelity. With experiments on Wan2.1-T2V-1.3B, MoGAN substantially improves motion quality across benchmarks. On VBench, MoGAN boosts motion score by +7.3% over the 50-step teacher and +13.3% over the 3-step DMD model. On VideoJAM-Bench, MoGAN improves motion score by +7.4% over the teacher and +8.8% over DMD, while maintaining comparable or even better aesthetic and image-quality scores. A human study further confirms that MoGAN is preferred for motion quality (52% vs. 38% for the teacher; 56% vs. 29% for DMD). Overall, MoGAN delivers significantly more realistic motion without sacrificing visual fidelity or efficiency, offering a practical path toward fast, high-quality video generation. Project webpage is: https://xavihart.github.io/mogan.
On the Limits of Innate Planning in Large Language Models
Large language models (LLMs) achieve impressive results on many benchmarks, yet their capacity for planning and stateful reasoning remains unclear. We study these abilities directly, without code execution or other tools, using the 8-puzzle: a classic task that requires state tracking and goal-directed planning while allowing precise, step-by-step evaluation. Four models are tested under common prompting conditions (Zero-Shot, Chain-of-Thought, Algorithm-of-Thought) and with tiered corrective feedback. Feedback improves success rates for some model-prompt combinations, but many successful runs are long, computationally expensive, and indirect. We then examine the models with an external move validator that provides only valid moves. Despite this level of assistance, none of the models solve any puzzles in this setting. Qualitative analysis reveals two dominant deficits across all models: (1) brittle internal state representations, leading to frequent invalid moves, and (2) weak heuristic planning, with models entering loops or selecting actions that do not reduce the distance to the goal state. These findings indicate that, in the absence of external tools such as code interpreters, current LLMs have substantial limitations in planning and that further progress may require mechanisms for maintaining explicit state and performing structured search.
An AI-Enabled Hybrid Cyber-Physical Framework for Adaptive Control in Smart Grids
Smart grids are a fusion of classical power infrastructure and advanced communication networks and smart control, to create a cyber-physical environment that is more efficient and flexible than ever before. This integration causes vulnerabilities that can undermine grid stability as well as reliability. Digital forensics is a fundamental concept of learning and identifying, detecting, and mitigating such security incidents. This paper presents an all-in-one machine learning-based digital forensic framework of smart grid systems deployed on the Cloud. The framework combines the data acquisition at the sensor-level, authenticated communication, scalable cloud storage and automated forensic analytics. The model uses supervised and unsupervised learning algorithms - such as Random Forest, Support Vector Machine, Gradient Boosted Trees and deep neural architectures for anomaly detection, event reconstruction and intrusion analysis in real time. After several simulation and experimental studies on real-time smart-meter data streams, the proposed framework is shown to be very accurate, scalable and resilient to cyber-attacks including data tampering, false-data injection and coordinated control-loop manipulation. The results indicate that cloud services are the best backbone for big-data-driven forensic workflows, which allows energy utilities to achieve a fast situational awareness and intelligent incident response.
Model-Based Policy Adaptation for Closed-Loop End-to-End Autonomous Driving
End-to-end (E2E) autonomous driving models have demonstrated strong performance in open-loop evaluations but often suffer from cascading errors and poor generalization in closed-loop settings. To address this gap, we propose Model-based Policy Adaptation (MPA), a general framework that enhances the robustness and safety of pretrained E2E driving agents during deployment. MPA first generates diverse counterfactual trajectories using a geometry-consistent simulation engine, exposing the agent to scenarios beyond the original dataset. Based on this generated data, MPA trains a diffusion-based policy adapter to refine the base policy's predictions and a multi-step Q value model to evaluate long-term outcomes. At inference time, the adapter proposes multiple trajectory candidates, and the Q value model selects the one with the highest expected utility. Experiments on the nuScenes benchmark using a photorealistic closed-loop simulator demonstrate that MPA significantly improves performance across in-domain, out-of-domain, and safety-critical scenarios. We further investigate how the scale of counterfactual data and inference-time guidance strategies affect overall effectiveness.
Deep Learning-Based Multiclass Classification of Oral Lesions with Stratified Augmentation
Oral cancer is highly common across the globe and is mostly diagnosed during the later stages due to the close visual similarity to benign, precancerous, and malignant lesions in the oral cavity. Implementing computer aided diagnosis systems early on has the potential to greatly improve clinical outcomes. This research intends to use deep learning to build a multiclass classifier for sixteen different oral lesions. To overcome the challenges of limited and imbalanced datasets, the proposed technique combines stratified data splitting and advanced data augmentation and oversampling to perform the classification. The experimental results, which achieved 83.33 percent accuracy, 89.12 percent precision, and 77.31 percent recall, demonstrate the superiority of the suggested model over state of the art methods now in use. The suggested model effectively conveys the effectiveness of oversampling and augmentation strategies in situations where the minority class classification performance is noteworthy. As a first step toward trustworthy computer aided diagnostic systems for the early detection of oral cancer in clinical settings, the suggested framework shows promise.
Learning When to Stop: Adaptive Latent Reasoning via Reinforcement Learning
Latent reasoning represents a new development in Transformer language models that has shown potential in compressing reasoning lengths compared to chain-of-thought reasoning. By directly passing the information-rich previous final latent state into the next sequence, latent reasoning removes the restriction to human language tokens as the medium for reasoning. We develop adaptive-length latent reasoning models and introduce a post-SFT reinforcement-learning methodology to optimize latent reasoning length by minimizing reasoning length while maintaining accuracy. This, in turn, further reduces compute usage and raises the bar on the compressive capabilities of latent reasoning models. Experiments on the Llama 3.2 1B model and the GSM8K-Aug dataset show a $52\%$ drop in total reasoning length with no penalty to accuracy. In future work, we plan to extend to additional models and datasets, analyze relationships between training coefficients, experiment with architecture variations, and continue our knowledge distillation for latent reasoning SFT efforts. We make our code and pretrained weights available at https://github.com/apning/adaptive-latent-reasoning.
Harmony: Harmonizing Audio and Video Generation through Cross-Task Synergy
The synthesis of synchronized audio-visual content is a key challenge in generative AI, with open-source models facing challenges in robust audio-video alignment. Our analysis reveals that this issue is rooted in three fundamental challenges of the joint diffusion process: (1) Correspondence Drift, where concurrently evolving noisy latents impede stable learning of alignment; (2) inefficient global attention mechanisms that fail to capture fine-grained temporal cues; and (3) the intra-modal bias of conventional Classifier-Free Guidance (CFG), which enhances conditionality but not cross-modal synchronization. To overcome these challenges, we introduce Harmony, a novel framework that mechanistically enforces audio-visual synchronization. We first propose a Cross-Task Synergy training paradigm to mitigate drift by leveraging strong supervisory signals from audio-driven video and video-driven audio generation tasks. Then, we design a Global-Local Decoupled Interaction Module for efficient and precise temporal-style alignment. Finally, we present a novel Synchronization-Enhanced CFG (SyncCFG) that explicitly isolates and amplifies the alignment signal during inference. Extensive experiments demonstrate that Harmony establishes a new state-of-the-art, significantly outperforming existing methods in both generation fidelity and, critically, in achieving fine-grained audio-visual synchronization.
HarmonicAttack: An Adaptive Cross-Domain Audio Watermark Removal
The availability of high-quality, AI-generated audio raises security challenges such as misinformation campaigns and voice-cloning fraud. A key defense against the misuse of AI-generated audio is by watermarking it, so that it can be easily distinguished from genuine audio. As those seeking to misuse AI-generated audio may thus seek to remove audio watermarks, studying effective watermark removal techniques is critical to being able to objectively evaluate the robustness of audio watermarks against removal. Previous watermark removal schemes either assume impractical knowledge of the watermarks they are designed to remove or are computationally expensive, potentially generating a false sense of confidence in current watermark schemes. We introduce HarmonicAttack, an efficient audio watermark removal method that only requires the basic ability to generate the watermarks from the targeted scheme and nothing else. With this, we are able to train a general watermark removal model that is able to remove the watermarks generated by the targeted scheme from any watermarked audio sample. HarmonicAttack employs a dual-path convolutional autoencoder that operates in both temporal and frequency domains, along with GAN-style training, to separate the watermark from the original audio. When evaluated against state-of-the-art watermark schemes AudioSeal, WavMark, and Silentcipher, HarmonicAttack demonstrates greater watermark removal ability than previous watermark removal methods with near real-time performance. Moreover, while HarmonicAttack requires training, we find that it is able to transfer to out-of-distribution samples with minimal degradation in performance.
Enhanced Landmark Detection Model in Pelvic Fluoroscopy using 2D/3D Registration Loss
Automated landmark detection offers an efficient approach for medical professionals to understand patient anatomic structure and positioning using intra-operative imaging. While current detection methods for pelvic fluoroscopy demonstrate promising accuracy, most assume a fixed Antero-Posterior view of the pelvis. However, orientation often deviates from this standard view, either due to repositioning of the imaging unit or of the target structure itself. To address this limitation, we propose a novel framework that incorporates 2D/3D landmark registration into the training of a U-Net landmark prediction model. We analyze the performance difference by comparing landmark detection accuracy between the baseline U-Net, U-Net trained with Pose Estimation Loss, and U-Net fine-tuned with Pose Estimation Loss under realistic intra-operative conditions where patient pose is variable.
Multimodal Robust Prompt Distillation for 3D Point Cloud Models
Adversarial attacks pose a significant threat to learning-based 3D point cloud models, critically undermining their reliability in security-sensitive applications. Existing defense methods often suffer from (1) high computational overhead and (2) poor generalization ability across diverse attack types. To bridge these gaps, we propose a novel yet efficient teacher-student framework, namely Multimodal Robust Prompt Distillation (MRPD) for distilling robust 3D point cloud model. It learns lightweight prompts by aligning student point cloud model's features with robust embeddings from three distinct teachers: a vision model processing depth projections, a high-performance 3D model, and a text encoder. To ensure a reliable knowledge transfer, this distillation is guided by a confidence-gated mechanism which dynamically balances the contribution of all input modalities. Notably, since the distillation is all during the training stage, there is no additional computational cost at inference. Extensive experiments demonstrate that MRPD substantially outperforms state-of-the-art defense methods against a wide range of white-box and black-box attacks, while even achieving better performance on clean data. Our work presents a new, practical paradigm for building robust 3D vision systems by efficiently harnessing multimodal knowledge.
BAMAS: Structuring Budget-Aware Multi-Agent Systems
Large language model (LLM)-based multi-agent systems have emerged as a powerful paradigm for enabling autonomous agents to solve complex tasks. As these systems scale in complexity, cost becomes an important consideration for practical deployment. However, existing work rarely addresses how to structure multi-agent systems under explicit budget constraints. In this paper, we propose BAMAS, a novel approach for building multi-agent systems with budget awareness. BAMAS first selects an optimal set of LLMs by formulating and solving an Integer Linear Programming problem that balances performance and cost. It then determines how these LLMs should collaborate by leveraging a reinforcement learning-based method to select the interaction topology. Finally, the system is instantiated and executed based on the selected agents and their collaboration topology. We evaluate BAMAS on three representative tasks and compare it with state-of-the-art agent construction methods. Results show that BAMAS achieves comparable performance while reducing cost by up to 86%.
From Prediction to Foresight: The Role of AI in Designing Responsible Futures
In an era marked by rapid technological advancements and complex global challenges, responsible foresight has emerged as an essential framework for policymakers aiming to navigate future uncertainties and shape the future. Responsible foresight entails the ethical anticipation of emerging opportunities and risks, with a focus on fostering proactive, sustainable, and accountable future design. This paper coins the term "responsible computational foresight", examining the role of human-centric artificial intelligence and computational modeling in advancing responsible foresight, establishing a set of foundational principles for this new field and presenting a suite of AI-driven foresight tools currently shaping it. AI, particularly in conjunction with simulations and scenario analysis, enhances policymakers' ability to address uncertainty, evaluate risks, and devise strategies geared toward sustainable, resilient futures. However, responsible foresight extends beyond mere technical forecasting; it demands a nuanced understanding of the interdependencies within social, environmental, economic and political systems, alongside a commitment to ethical, long-term decision-making that supports human intelligence. We argue that AI will play a role as a supportive tool in responsible, human-centered foresight, complementing rather than substituting policymaker judgment to enable the proactive shaping of resilient and ethically sound futures. This paper advocates for the thoughtful integration of AI into foresight practices to empower policymakers and communities as they confront the grand challenges of the 21st century.
Self-Transparency Failures in Expert-Persona LLMs: A Large-Scale Behavioral Audit
If a language model cannot reliably disclose its AI identity in expert contexts, users cannot trust its competence boundaries. This study examines self-transparency in models assigned professional personas within high-stakes domains where false expertise risks user harm. Using a common-garden design, sixteen open-weight models (4B--671B parameters) were audited across 19,200 trials. Models exhibited sharp domain-specific inconsistency: a Financial Advisor persona elicited 30.8% disclosure initially, while a Neurosurgeon persona elicited only 3.5%. This creates preconditions for a "Reverse Gell-Mann Amnesia" effect, where transparency in some domains leads users to overgeneralize trust to contexts where disclosure fails. Disclosure ranged from 2.8% to 73.6%, with a 14B model reaching 61.4% while a 70B produced just 4.1%. Model identity predicted behavior better than parameter count ($ΔR_{adj}^{2} = 0.359$ vs 0.018). Reasoning optimization actively suppressed self-transparency in some models, with reasoning variants showing up to 48.4% lower disclosure than base counterparts. Bayesian validation with Rogan--Gladen correction confirmed robustness to measurement error ($κ= 0.908$). These findings demonstrate transparency reflects training factors rather than scale. Organizations cannot assume safety properties transfer to deployment contexts, requiring deliberate behavior design and empirical verification.
RoParQ: Paraphrase-Aware Alignment of Large Language Models Towards Robustness to Paraphrased Questions
Large Language Models (LLMs) often exhibit inconsistent behavior when answering paraphrased questions, suggesting a reliance on surface-level patterns rather than true semantic understanding. To address this limitation, we introduce RoParQ, a benchmark specifically constructed to evaluate cross-paraphrase consistency in closed-book multiple-choice QA. This benchmark is derived from standard datasets by generating paraphrases via proprietary models and selectively retaining examples that elicit inconsistent confidence from a judge model. We further propose XParaCon, a novel evaluation metric that quantifies a model's robustness by measuring the standard deviation of accuracies across question variants. Additionally, we implement a reasoning-based, paraphrase-aware Supervised Fine-Tuning (SFT) strategy designed to align models toward semantic invariance. Our experiments demonstrate that this targeted alignment significantly enhances robustness. Notably, fine-tuned lightweight models achieved consistency levels comparable to much larger pre-trained models. These results highlight the efficacy of our approach in mitigating superficial memorization and fostering more robust, reliable LLMs.
A decoupled alignment kernel for peptide membrane permeability predictions
Cyclic peptides are promising modalities for targeting intracellular sites; however, cell-membrane permeability remains a key bottleneck, exacerbated by limited public data and the need for well-calibrated uncertainty. Instead of relying on data-eager complex deep learning architecture, we propose a monomer-aware decoupled global alignment kernel (MD-GAK), which couples chemically meaningful residue-residue similarity with sequence alignment while decoupling local matches from gap penalties. MD-GAK is a relatively simple kernel. To further demonstrate the robustness of our framework, we also introduce a variant, PMD-GAK, which incorporates a triangular positional prior. As we will show in the experimental section, PMD-GAK can offer additional advantages over MD-GAK, particularly in reducing calibration errors. Since our focus is on uncertainty estimation, we use Gaussian Processes as the predictive model, as both MD-GAK and PMD-GAK can be directly applied within this framework. We demonstrate the effectiveness of our methods through an extensive set of experiments, comparing our fully reproducible approach against state-of-the-art models, and show that it outperforms them across all metrics.