Logic-Parametric Neuro-Symbolic NLI: Controlling Logical Formalisms for Verifiable LLM Reasoning
์ด๋ก
Large language models (LLMs) and theorem provers (TPs) can be effectively combined for verifiable natural language inference (NLI). However, existing approaches rely on a fixed logical formalism, a feature that limits robustness and adaptability. We propose a logic-parametric framework for neuro-symbolic NLI that treats the underlying logic not as a static background, but as a controllable component. Using the LogiKEy methodology, we embed a range of classical and non-classical formalisms into higher-order logic (HOL), enabling a systematic comparison of inference quality, explanation refinement, and proof behavior. We focus on normative reasoning, where the choice of logic has significant implications. In particular, we compare logic-external approaches, where normative requirements are encoded via axioms, with logic-internal approaches, where normative patterns emerge from the logic's built-in structure. Extensive experiments demonstrate that logic-internal strategies can consistently improve performance and produce more efficient hybrid proofs for NLI. In addition, we show that the effectiveness of a logic is domain-dependent, with first-order logic favouring commonsense reasoning, while deontic and modal logics excel in ethical domains. Our results highlight the value of making logic a first-class, parametric element in neuro-symbolic architectures for more robust, modular, and adaptable reasoning.