Self-Transparency Failures in Expert-Persona LLMs: A Large-Scale Behavioral Audit

1 authors
arXiv:2511.21569v1

Authors

Abstract

If a language model cannot reliably disclose its AI identity in expert contexts, users cannot trust its competence boundaries. This study examines self-transparency in models assigned professional personas within high-stakes domains where false expertise risks user harm. Using a common-garden design, sixteen open-weight models (4B--671B parameters) were audited across 19,200 trials. Models exhibited sharp domain-specific inconsistency: a Financial Advisor persona elicited 30.8% disclosure initially, while a Neurosurgeon persona elicited only 3.5%. This creates preconditions for a "Reverse Gell-Mann Amnesia" effect, where transparency in some domains leads users to overgeneralize trust to contexts where disclosure fails. Disclosure ranged from 2.8% to 73.6%, with a 14B model reaching 61.4% while a 70B produced just 4.1%. Model identity predicted behavior better than parameter count ($ΔR_{adj}^{2} = 0.359$ vs 0.018). Reasoning optimization actively suppressed self-transparency in some models, with reasoning variants showing up to 48.4% lower disclosure than base counterparts. Bayesian validation with Rogan--Gladen correction confirmed robustness to measurement error ($κ= 0.908$). These findings demonstrate transparency reflects training factors rather than scale. Organizations cannot assume safety properties transfer to deployment contexts, requiring deliberate behavior design and empirical verification.

Paper Information

arXiv ID:
2511.21569v1
Published:
Categories:
cs.AI, cs.HC