Revolutionizing Glioma Segmentation & Grading Using 3D MRI - Guided Hybrid Deep Learning Models

5 authors
arXiv:2511.21673v1

Authors

Abstract

Gliomas are brain tumor types that have a high mortality rate which means early and accurate diagnosis is important for therapeutic intervention for the tumors. To address this difficulty, the proposed research will develop a hybrid deep learning model which integrates U-Net based segmentation and a hybrid DenseNet-VGG classification network with multihead attention and spatial-channel attention capabilities. The segmentation model will precisely demarcate the tumors in a 3D volume of MRI data guided by spatial and contextual information. The classification network which combines a branch of both DenseNet and VGG, will incorporate the demarcated tumor on which features with attention mechanisms would be focused on clinically relevant features. High-dimensional 3D MRI data could successfully be utilized in the model through preprocessing steps which are normalization, resampling, and data augmentation. Through a variety of measures the framework is evaluated: measures of performance in segmentation are Dice coefficient and Mean Intersection over Union (IoU) and measures of performance in classification are accuracy precision, recall, and F1-score. The hybrid framework that has been proposed has demonstrated through physical testing that it has the capability of obtaining a Dice coefficient of 98% in tumor segmentation, and 99% on classification accuracy, outperforming traditional CNN models and attention-free methods. Utilizing multi-head attention mechanisms enhances notions of priority in aspects of the tumor that are clinically significant, and enhances interpretability and accuracy. The results suggest a great potential of the framework in facilitating the timely and reliable diagnosis and grading of glioma by clinicians is promising, allowing for better planning of patient treatment.

Paper Information

arXiv ID:
2511.21673v1
Published:
Categories:
cs.CV