Event-driven eligibility propagation in large sparse networks: efficiency shaped by biological realism

8 authors
arXiv:2511.21674v1

Authors

Abstract

Despite remarkable technological advances, AI systems may still benefit from biological principles, such as recurrent connectivity and energy-efficient mechanisms. Drawing inspiration from the brain, we present a biologically plausible extension of the eligibility propagation (e-prop) learning rule for recurrent spiking networks. By translating the time-driven update scheme into an event-driven one, we integrate the learning rule into a simulation platform for large-scale spiking neural networks and demonstrate its applicability to tasks such as neuromorphic MNIST. We extend the model with prominent biological features such as continuous dynamics and weight updates, strict locality, and sparse connectivity. Our results show that biologically grounded constraints can inform the design of computationally efficient AI algorithms, offering scalability to millions of neurons without compromising learning performance. This work bridges machine learning and computational neuroscience, paving the way for sustainable, biologically inspired AI systems while advancing our understanding of brain-like learning.

Paper Information

arXiv ID:
2511.21674v1
Published:
Categories:
cs.NE, q-bio.NC