Learning Reconstructive Embeddings in Reproducing Kernel Hilbert Spaces via the Representer Theorem

3 authors
arXiv:2601.05811v1

Authors

Abstract

Motivated by the growing interest in representation learning approaches that uncover the latent structure of high-dimensional data, this work proposes new algorithms for reconstruction-based manifold learning within Reproducing-Kernel Hilbert Spaces (RKHS). Each observation is first reconstructed as a linear combination of the other samples in the RKHS, by optimizing a vector form of the Representer Theorem for their autorepresentation property. A separable operator-valued kernel extends the formulation to vector-valued data while retaining the simplicity of a single scalar similarity function. A subsequent kernel-alignment task projects the data into a lower-dimensional latent space whose Gram matrix aims to match the high-dimensional reconstruction kernel, thus transferring the auto-reconstruction geometry of the RKHS to the embedding. Therefore, the proposed algorithms represent an extended approach to the autorepresentation property, exhibited by many natural data, by using and adapting well-known results of Kernel Learning Theory. Numerical experiments on both simulated (concentric circles and swiss-roll) and real (cancer molecular activity and IoT network intrusions) datasets provide empirical evidence of the practical effectiveness of the proposed approach.

Paper Information

arXiv ID:
2601.05811v1
Published:
Categories:
cs.LG