SiliconHealth: A Complete Low-Cost Blockchain Healthcare Infrastructure for Resource-Constrained Regions Using Repurposed Bitcoin Mining ASICs

3 authors
arXiv:2601.09557v1

Authors

Abstract

This paper presents SiliconHealth, a comprehensive blockchain-based healthcare infrastructure designed for resource-constrained regions, particularly sub-Saharan Africa. We demonstrate that obsolete Bitcoin mining Application-Specific Integrated Circuits (ASICs) can be repurposed to create a secure, low-cost, and energy-efficient medical records system. The proposed architecture employs a four-tier hierarchical network: regional hospitals using Antminer S19 Pro (90+ TH/s), urban health centers with Antminer S9 (14 TH/s), rural clinics equipped with Lucky Miner LV06 (500 GH/s, 13W), and mobile health points with portable ASIC devices. We introduce the Deterministic Hardware Fingerprinting (DHF) paradigm, which repurposes SHA-256 mining ASICs as cryptographic proof generators, achieving 100% verification rate across 23 test proofs during 300-second validation sessions. The system incorporates Reed-Solomon LSB watermarking for medical image authentication with 30-40% damage tolerance, semantic Retrieval-Augmented Generation (RAG) for intelligent medical record queries, and offline synchronization protocols for intermittent connectivity. Economic analysis demonstrates 96% cost reduction compared to GPU-based alternatives, with total deployment cost of $847 per rural clinic including 5-year solar power infrastructure. Validation experiments on Lucky Miner LV06 (BM1366 chip, 5nm) achieve 2.93 MH/W efficiency and confirm hardware universality. This work establishes a practical framework for deploying verifiable, tamper-proof electronic health records in regions where traditional healthcare IT infrastructure is economically unfeasible, potentially benefiting over 600 million people lacking access to basic health information systems.

Paper Information

arXiv ID:
2601.09557v1
Published:
Categories:
cs.NE, cs.CR