Improving CMA-ES Convergence Speed, Efficiency, and Reliability in Noisy Robot Optimization Problems

2 authors
arXiv:2601.09594v1

Authors

Abstract

Experimental robot optimization often requires evaluating each candidate policy for seconds to minutes. The chosen evaluation time influences optimization because of a speed-accuracy tradeoff: shorter evaluations enable faster iteration, but are also more subject to noise. Here, we introduce a supplement to the CMA-ES optimization algorithm, named Adaptive Sampling CMA-ES (AS-CMA), which assigns sampling time to candidates based on predicted sorting difficulty, aiming to achieve consistent precision. We compared AS-CMA to CMA-ES and Bayesian optimization using a range of static sampling times in four simulated cost landscapes. AS-CMA converged on 98% of all runs without adjustment to its tunable parameter, and converged 24-65% faster and with 29-76% lower total cost than each landscape's best CMA-ES static sampling time. As compared to Bayesian optimization, AS-CMA converged more efficiently and reliably in complex landscapes, while in simpler landscapes, AS-CMA was less efficient but equally reliable. We deployed AS-CMA in an exoskeleton optimization experiment and found the optimizer's behavior was consistent with expectations. These results indicate that AS-CMA can improve optimization efficiency in the presence of noise while minimally affecting optimization setup complexity and tuning requirements.

Paper Information

arXiv ID:
2601.09594v1
Published:
Categories:
cs.NE